0/1-Form and 2-Group Symmetries via Boundary Geometries

Max Hübner

2203.10022 with David R. Morrison, Sakura Schäfer-Nameki and Yi-Nan Wang 2203.10102 with Mirjam Cvetič, Jonathan J. Heckman, Ethan Torres

Imperial College London, Quiver Meeting

June 3rd 2022

Introduction

Defect Group and Higher Symmetries Global Form of Flavor Symmetries 2-Group Symmetries Conclusion, Omissions and Outlook

Motivation Overview

Motivation

• Geometric Engineering:

 $SQFT \hookrightarrow String Theory \twoheadrightarrow SQFT$ (Branes, Singularities,...)

• Correspondences/Dictionary:

 $Operators, \ Symmetries, \ldots \ \leftrightarrow \ Geometry \ {\tiny (Topology, \ Diff, \ Riemannian, \ldots)}$

- GKSW: Global Symmetry \rightarrow Topological Defects
- Today's focus: Higher-Symmetries & Topological Structures

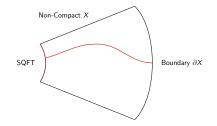
[Heckman, Lawrie, Lin, Zhang, Zoccarato, 2022], [Del Zotto, García Etxebarria, Schäfer-Nameki, 2022], [Del Zotto,
Heckman, Meynet, Moscrop, Zhang, 2022], [Bhardwaj, Giacomelli, Hübner, Schäfer-Nameki, 2021], [Apruzzi,
Bhardwaj, Oh, Schafer-Nameki, 2021], [Apruzzi, Bhardwaj, Gould, Schäfer-Namek, 2021], [Apruzzi, Dierigl, Lin,
2020], [Morrison, Schäfer-Nameki, Willett, 2020], [Del Zotto, Ohmori, 2020], [Albertini, Del Zotto, García
Etxebarria, Hosseini, 2020], [Cvetič, Dierigl, Lin, Zhang, 2021], [Del Zotto, Heckman, Park, Rudelius, 2015], ...

Motivation Overview

• This Presentation:

M-theory + Singularities \leftrightarrow 7d, 5d, 4d SQFTs Topological Data \leftrightarrow 0/1-form, 2-group Symmetries

• Generic Geometric Set-Up:



• Geometries X: Elliptic CY₃, Toric \mathbb{C}^3/Γ , G_2 -Spaces

Introduction

Defect Group and Higher Symmetries Global Form of Flavor Symmetries 2-Group Symmetries Conclusion, Omissions and Outlook

Motivation Overview

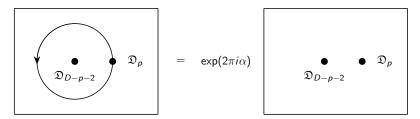
Overview

- 2 Defect Group and Higher Symmetries
- Global Form of Flavor Symmetries
- 4 2-Group Symmetries
- **5** Conclusion, Omissions and Outlook

Relative Theories Geometrization of Defects Example: Local K3s

Defect Group (Field Theory)_D

- Defect Group: $\mathfrak{D} = \oplus_{p} \mathfrak{D}_{p}$
- Phase ambiguity in correlation functions [Seiberg, Taylor, 2011]



with $\alpha = \langle \mathfrak{D}_{p}, \mathfrak{D}_{D-p-2} \rangle$.

- Polarizations $\Lambda \subset \mathfrak{D}$ determine absolute theories [Gaiotto, Moore, Neitzke, 2010], [Aharony, Seiberg, Tachikawa, 2013], [Gukov, Hsin, Pei, 2020]
- $\bullet\,$ The higher symmetries are then the Pontryagin dual Λ^{\vee}

Relative Theories Geometrization of Defects Example: Local K3s

Defect Group (M-theory on X)

- $\mathcal{D}_p = \mathcal{D}_p^{M2} \oplus \mathcal{D}_p^{M5}$
- M2, M5 on relative cycles [Morrison, Schäfer-Nameki, Willett, 2020], [Albertini, Del Zotto, García Etxebarria, Hosseini, 2020], [Del Zotto, Heckman, Park, Rudelius, 2015]

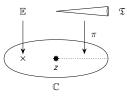
$$\mathcal{D}_{p}^{M2} = \operatorname{Tor} \frac{H_{3-p}(X, \partial X)}{H_{3-p}(X)} \cong \operatorname{Tor} H_{3-p-1}(\partial X)|_{\operatorname{triv}}$$
$$\mathcal{D}_{p}^{M5} = \operatorname{Tor} \frac{H_{6-p}(X, \partial X)}{H_{6-p}(X)} \cong \operatorname{Tor} H_{6-p-1}(\partial X)|_{\operatorname{triv}}$$

• $\langle \, \cdot \, , \cdot \, \rangle \; \leftrightarrow \;$ Linking Pairing $\ell(\, \cdot \, , \cdot \,)$ in ∂X

Relative Theories Geometrization of Defects Example: Local K3s

Example: M-theory on Local K3s

• Local K3: $X \to \mathbb{C}$ with singularity of Kodaira type Φ at $z \in \mathbb{C}$



• Boundary $\partial X \to S^1$ with monodromy M_1 , we use

$$0 \hspace{.1in}
ightarrow \hspace{.1in} \operatorname{coker} \left(M_n - 1
ight) \hspace{.1in}
ightarrow \hspace{.1in} H_n(\partial X) \hspace{.1in}
ightarrow \hspace{.1in} \ker \left(M_{n-1} - 1
ight) \hspace{.1in}
ightarrow \hspace{.1in} 0$$

- $\mathcal{D}_1^{M2} = \mathcal{D}_4^{M5} = \text{Tor } H_2(X, \partial X) / H_2(X) \cong \text{Tor Coker}(M_1 1) = \langle \mathfrak{T} \rangle$
- X engineers 7d SYM with gauge algebra \mathfrak{g}_{Φ}

• Defect group
$$\mathcal{D} = \langle \mathfrak{T} \rangle_1^{M2} \oplus \langle \mathfrak{T} \rangle_4^{M5}$$

Relative Theories Geometrization of Defects Example: Local K3s

(Local K3s Continued)

- We have determined the defect group, now determine maximally mutually local subgroups
- Resolve Kodaira Singularity $\widetilde{X} \to X$, exceptional curves C_{α_i}
- Dualize to linear forms via intersection pairing

$$\begin{aligned} \alpha &: H_2(\widetilde{X}) \to H_2(\widetilde{X})^* \,, \qquad \mathcal{C}_{\alpha_i} \mapsto (\mathcal{C}_{\alpha_i}, \,\cdot\,) \,, \\ \beta &: H_2(\widetilde{X}, \partial X) \to H_2(\widetilde{X})^* \,, \qquad \widehat{\mathfrak{T}} \mapsto (\widehat{\mathfrak{T}}, \,\cdot\,) \end{aligned}$$

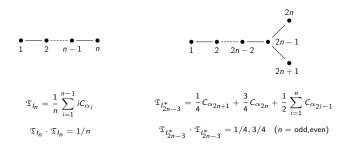
where $Im(\alpha) \subset Im(\beta)$.

• Thimbles \mathfrak{T} admit compact representatives in $H_2(\widetilde{X},\mathbb{Q}/\mathbb{Z})$

Relative Theories Geometrization of Defects Example: Local K3s

(Local K3s Continued)

Example of compact representatives for Kodaira Thimbles for singularities of Kodaira type $\Phi = I_n, I_{2n-3}^* (\mathfrak{g} = \mathfrak{su}, \mathfrak{so})$



 \Rightarrow Talk at Freiburg Simon's Meeting 8th June

Relative Theories Geometrization of Defects Example: Local K3s

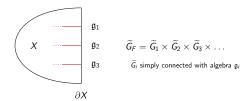
Example (Continued)

- Non-trivial self-linking/intersection $\ell(\partial \mathfrak{T}, \partial \mathfrak{T}) = \mathfrak{T} \cdot \mathfrak{T} \neq 0$
- \bullet Elements of $\mathcal{D}_1^{M2}, \mathcal{D}_4^{M5}$ generically mutually non-local
- Choose electric polarization \mathcal{D}_1^{M2} (throughout this talk)
- Gauge group is simply connected G_{Φ} with algebra \mathfrak{g}_{Φ}
- Engineered 7d SYM theory with gauge group G_{Φ}
- Wilson line operators \mathcal{D}_1^{M2} acted on by 1-form symmetry Z_{G_Φ}
- This example generalizes straightforwardly.

0-Form Flavor Symmetries and Lines Example: 5d T_N Theory Example: Conformal Matter

0-Form Flavor Symmetries

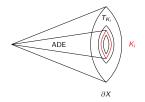
- When are flavor symmetries present?
- Non-compact ADE loci (= flavor branes) → Flavor symmetries
- Naive (non-abelian) flavor symmetry \widetilde{G}_{F} :



- $\bullet\,$ Flavor Wilson lines $\to\,$ global form of flavor symmetry
- Gauge Wilson lines: non-compact two-cycles in X fibered by vanishing cycles
- Flavor Wilson lines: compact two-cycles in ∂X fibered by vanishing cycles

0-Form Flavor Symmetries and Lines Example: 5d T_N Theory Example: Conformal Matter

- Define $K = \bigcup_i K_i$ as ADE locus in boundary ∂X
- Define the tube T_K and smooth boundary $\partial X^\circ = \partial X \setminus K$
- Locally $T_K \cap \partial X^\circ \cong \cup_i K_i \times S^3 / \Gamma_i$



- ADE: Tor $H_1(S^3/\Gamma_i) = Z_{\widetilde{G}_i}$
- Naive Flavor Center

$$Z_{\widetilde{G}_{F}} = \operatorname{Tor} H_{1}(T_{K} \cap \partial X^{\circ}) \cong Z_{\widetilde{G}_{1}} \oplus Z_{\widetilde{G}_{2}} \oplus Z_{\widetilde{G}_{3}} \oplus \dots$$

0-Form Flavor Symmetries and Lines Example: 5d T_N Theory Example: Conformal Matter

Flavor Wilson Lines

• Mayer-Vietoris sequence for covering $\partial X = \partial X^{\circ} \cup T_{K}$

$$\ldots \rightarrow H_n(\partial X^{\circ} \cap T_K) \xrightarrow{\iota_n} H_n(\partial X^{\circ}) \oplus H_n(T_K) \rightarrow H_n(\partial X) \xrightarrow{\partial_n} \ldots$$

Flavor Wilson lines

$$\begin{split} Z_{G_F} &\cong \operatorname{Tor} \operatorname{Im} \left(\partial_2 : H_2(\partial X) \to H_1(\partial X^\circ \cap T_K) \cong Z_{\widetilde{G}_F} \right) \\ &= \operatorname{Tor} \operatorname{Ker} \left(\iota_1 : Z_{\widetilde{G}_F} \cong H_1(\partial X^\circ \cap T_K) \to H_1(\partial X^\circ) \oplus H_1(T_K) \right) \end{split}$$

 \equiv two-cycles fibered by vanishing one-cycles of the ADE singularities

0-Form Flavor Symmetries and Lines Example: 5d T_N Theory Example: Conformal Matter

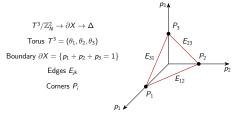
Example: 5d T_N Theory

•
$$X = \mathbb{C}^3 / \mathbb{Z}_N \times \mathbb{Z}_N$$
 where $(\omega^N = \eta^N = 1)$

$$(z_1, z_2, z_3) \sim (\omega z_1, \eta z_2, (\omega \eta)^{-1} z_3)$$

Three A_{N-1} planes $z_i = z_j = 0$. Trivial 1-form symmetry [Tian, Wang, 2021], [Del Zotto, Heckman, Meynet, Moscrop, Zhang, 2022]

- Flavor algebra $\mathfrak{su}(N)^3$
- Toric coordinates: $p_i = |z_i|^2$ and $\theta_i = \arg z_i$, three circle worths of A_{N-1} singularities in ∂X



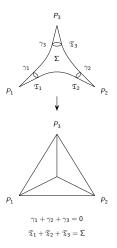
0-Form Flavor Symmetries and Lines Example: 5d T_N Theory Example: Conformal Matter

$(T_N \text{ Continued})$

• Trivial $T^3 = S_1^1 \times S_2^1 \times S_3^1$ fibration, following one-cycles collapse at ADE singularities

$$\begin{array}{ll} P_1 : & \gamma_1 = (S_2^1 - S_3^1)/N \\ P_2 : & \gamma_2 = (S_3^1 - S_1^1)/N \\ P_3 : & \gamma_3 = (S_1^1 - S_2^1)/N \end{array}$$

 Relative two-cycles ℑ_i fibered by γ_i glue to two-cycle Σ



0-Form Flavor Symmetries and Lines Example: 5d T_N Theory Example: Conformal Matter

$(T_N \text{ Continued})$

- Torsional two-cycles $H_2(\partial X) \cong \mathbb{Z}_N$ generated by Σ
- Diagonal embedding

$$\partial_2 : \mathbb{Z}_N \cong H_2(\partial X) \to H_1(\partial X^\circ \cap T_K) \cong \mathbb{Z}_N^3$$

• Flavor Symmetry and Center [Bhardwaj, 2021]

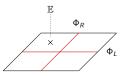
$$G_F = SU(N)^3/\mathbb{Z}_N imes \mathbb{Z}_N, \qquad Z_{G_F} \cong \operatorname{Im} \partial_2 \cong \mathbb{Z}_N$$

• $T_3 = E_6$ Minahan-Nemeschansky, $G_F = SU(3)^3/\mathbb{Z}_3^2$ is compatible with enhancement to $G_F = E_6/\mathbb{Z}_3$. [Bhardwaj, 2021]

0-Form Flavor Symmetries and Lines Example: 5d T_N Theory Example: Conformal Matter

Example: (G_{ADE}, G_{ADE}) Conformal Matter

- Elliptic three-fold $\mathbb{E} \hookrightarrow X_3 o B = \mathbb{C}^2$ [Del Zotto, Heckman, Tomasiello, Vafa, 2014]
- Discriminant Locus Φ_L on $\mathbb{C} \times \{0\}$ and Φ_R on $\{0\} \times \mathbb{C}$



• Boundary five-manifold $\mathbb{E} \hookrightarrow \partial X_3 \to S^3$ where

$$T^2 = S^1_L \times S^1_R \ \hookrightarrow \ S^3 \ o \ [0,1]$$

• Discriminant locus consists of two linking circles in S³ (Hopf link)

0-Form Flavor Symmetries and Lines Example: 5d T_N Theory Example: Conformal Matter

(Example Continued)

- Now characterize the spectrum of two-cycles
- Excise the singular fibers

$$\mathbb{E} \ \hookrightarrow \ \partial X^{\circ} \ \to \ S^1_L \times S^1_R$$

• Short exact sequence for spaces $X o S^1$ fibered over circles

$$0 \rightarrow \operatorname{coker}(M_n-1) \rightarrow H_n(X) \rightarrow \operatorname{ker}(M_{n-1}-1) \rightarrow 0$$

where M_n is the monodromy in homology in degree n.

• Monodromies M_{Φ_L}, M_{Φ_R} about S^1_L, S^1_R respectively, it follows

Tor
$$H_1(\partial X^\circ) = \text{Tor } \frac{\mathbb{Z}^2}{\text{Im}(M_{\Phi_L} - 1) \cup \text{Im}(M_{\Phi_R} - 1)}$$

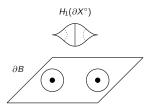
0-Form Flavor Symmetries and Lines Example: 5d T_N Theory Example: Conformal Matter

(Example Continued)

- Here Tor H₁(∂X°) characterized one-cycles which collapse at both discriminant components
- (SU(n), SU(m)) Conformal Matter (=Bifundamental Matter)

$$G_F = \frac{SU(n) \times SU(m)}{\mathbb{Z}_{\gcd(n,m)}}$$

• More generally $G_F = G_L \times G_R / Z_{\text{diag}}$



2-Groups

• Two key short exact sequence (and Postnikov class) [Lee, Ohmori,

Tachikawa, 2021], [Benini, Cordova, Hsin, 2019], ...

$$\begin{array}{rcl} 0 & \rightarrow & \mathcal{C} & \rightarrow & Z_{\widetilde{G}_{F}} & \rightarrow & Z_{G_{F}} & \rightarrow & 0 \\ \\ 0 & \rightarrow & \mathcal{C}^{\vee} & \rightarrow & \widetilde{\mathcal{A}}^{\vee} & \rightarrow & \mathcal{A}^{\vee} & \rightarrow & 0 \end{array}$$

- Z_{G_F} : Center Flavor Symmetry
- $Z_{\widetilde{G}_{F}}$: Naive Center Flavor Symmetry
- $\bullet \ \mathcal{A}^{\vee}$: Line Operators modulo screening by local operators
- $\widetilde{\mathcal{A}}^{\vee}$: Line Operators modulo screening by local operators transforming in reps of Z_{G_F}
- $\mathcal{C}^\vee~$: Line Operators in the kernel of $\widetilde{\mathcal{A}}^\vee\to \mathcal{A}^\vee$

 Introduction
 2-Group Symmetries

 Defect Group and Higher Symmetries
 Orbifold Homology

 Global Form of Flavor Symmetries
 2-groups and Mayer-Vietoris

 2-groups and Mayer-Vietoris
 Example: 5d Spin(8 + 2m) with 2m Vectors

Orbifold Homology

$$0 \
ightarrow \ \mathcal{C}^{ee} \
ightarrow \ \widetilde{\mathcal{A}}^{ee} \
ightarrow \ \mathcal{A}^{ee} \
ightarrow \ 0$$

- Equivariant Case: Global quotient X = Y/Γ, Y contractible

 Ã[∨]: M2 branes wrapped on H₁^{equiv}(∂X)
- Short exact sequence (projection onto singular homology):

$$0 \rightarrow \ker p \rightarrow H_1^{\text{equiv}}(\partial X) \xrightarrow{p} H_1(\partial X) \rightarrow 0$$

Identifications:

 $\mathcal{A}^{\vee} = H_1(\partial X) \qquad (\text{line operators/defects}) \\ \mathcal{C}^{\vee} = \ker p \qquad (\text{twisted sector})$

 $\bullet\,$ General Case: Equivariant Homology $\rightarrow\,$ Orbifold Homology

 $\widetilde{\mathcal{A}}^{\vee}$: M2 branes wrapped on $H_1^{\mathrm{orb}}(\partial X)$

2-Group Symmetries Orbifold Homology 2-groups and Mayer-Vietoris Example: 5d Spin(8 + 2m) with 2m Vectors

Codimension-4 ADE Singularities

• Characterization in singular homology [Thurston, 1980], [Moerdijk, Pronk, 1997]

$$H_1^{\mathrm{orb}}(\partial X) \cong H_1(\partial X^\circ)$$

where $\partial X^{\circ} = \partial X \setminus K$ with ADE locus *K*.

• But we encountered $H_1(\partial X^\circ)$ earlier already...

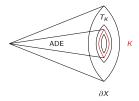
Introduction Defect Group and Higher Symmetries Global Form of Flavor Symmetries 2-Group Symmetries 2-Group Symmetries Conclusion, Omissions and Outlook Example: 5d Spin(8 + 2m) with 2m Vectors

2-groups and Mayer-Vietoris

• Mayer-Vietoris sequence for covering $\partial X = \partial X^{\circ} \cup T_{K}$

$$\ldots \rightarrow H_n(\partial X^{\circ} \cap T_K) \xrightarrow{\iota_n} H_n(\partial X^{\circ}) \oplus H_n(T_K) \rightarrow H_n(\partial X) \xrightarrow{\partial_n} \ldots$$

- Tube T_K deformation retracts to ADE locus K
- ADE locus K has simple topology (eg. circles in 5d examples)



Introduction Defect Group and Higher Symmetries Global Form of Flavor Symmetries 2-Group Symmetries Conclusion, Omissions and Outlook Conclusion, Omissions and Outlook

• We derive the exact sequence

 $0 \ \rightarrow \ \ker(\iota_1) \ \rightarrow \ H_1\big(\partial X^\circ \cap T_K\big) \ \stackrel{\iota_1}{\longrightarrow} \ H_1\big(\partial X^\circ\big) \oplus H_1(T_K) \ \rightarrow \ H_1(\partial X) \ \rightarrow \ 0 \,.$

• Which maps (after removing trivial free factors and reversing arrows) to the symmetry relations

$$0 \ o \ {\cal A} \ o \ {\widetilde {\cal A}} \ o \ {\widetilde {\cal A}} \ o \ {\cal Z}_{{\widetilde {\cal G}}_{\sf F}} \ o \ {\cal Z}_{{\cal G}_{\sf F}} \ o \ 0 \, .$$

Introduction Defect Group and Higher Symmetries Global Form of Flavor Symmetries 2-Group Symmetries 2-Group Symmetries 2-Group Symmetries 2-groups and Mayer-Vietoris Example: 5d Spin(8 + 2m) with 2m Vectors

• By general properties of exact sequences we have the split

$$egin{array}{rcl} 0 & o & \mathcal{C} & o & Z_{\widetilde{G}_{F}} & o & Z_{G_{F}} & o & 0 \ 0 & o & \mathcal{C}^{ee} & o & \widetilde{\mathcal{A}}^{ee} & o & \mathcal{A}^{ee} & o & 0 \end{array}$$

• Which is contained in the geometry as

$$0 \rightarrow \ker(\iota_{1}) \rightarrow H_{1}(\partial X^{\circ} \cap T_{\kappa}) \xrightarrow{\iota_{1}} \frac{H_{1}(\partial X^{\circ} \cap T_{\kappa})}{\ker(\iota_{1})} \rightarrow 0,$$

$$0 \rightarrow \frac{H_{1}(\partial X^{\circ} \cap T_{\kappa})}{\ker(\iota_{1})} \rightarrow H_{1}(\partial X^{\circ}) \oplus H_{1}(T_{\kappa}) \rightarrow H_{1}(\partial X) \rightarrow 0$$

- Postnikov class is the Bockstein of the extension class for the SES characterizing the global form of the flavor symmetry
- $\bullet \Rightarrow$ 0-form, 1-form, 2-group symmetries from cutting and gluing of orbifolds

Introduction Defect Group and Higher Symmetries Global Form of Flavor Symmetries 2-Group Symmetries 2-Group Symmetries 2-groups and Mayer-Vietoris Example: 5d Spin(8 + 2m) with 2m Vectors

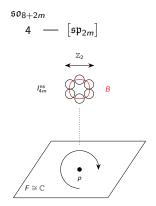
Example: 5d Spin(8 + 2m) with 2m Vectors

• Elliptic
$$X_3 \rightarrow B$$
, $B = \mathcal{O}_{\mathbb{P}^1}(-4)$

Discriminant Locus

$$\mathbb{P}^1$$
 : $I_m^{\mathrm{s},\mathrm{s}}$
 $\mathcal{F} \subset \mathcal{O}_{\mathbb{P}^1}(-4)$: I_{4m}^{ns}

- (n)s = (non)-split
- At Ramification point *p* one-cycle *B* collapses



 Introduction
 2-Group Symmetries

 Defect Group and Higher Symmetries
 Orbifold Homology

 Global Form of Flavor Symmetries
 2-groups and Mayer-Vietoris

 2-groups and Mayer-Vietoris
 Example: 5d Spin(8 + 2m) with 2m Vectors

(Example Continued)

$$\mathbb{E} \,\, \hookrightarrow \,\, \partial X_3 \,\, \to \,\, S^3/\mathbb{Z}_4 = \partial \mathcal{O}_{\mathbb{P}^1}(-4)$$

- Tor $H_1(\partial X) \cong \mathbb{Z}_4 \oplus \mathbb{Z}_2$: Hopf fiber of the base S_3/\mathbb{Z}_4 and B
- Tor $H_1(\partial X^\circ)$: Excising singular fibers, implies for base

$$S^1 \ \hookrightarrow \ S^3/\mathbb{Z}_4 \ o \ S^2\setminus\{*\}$$

- Now $S^2 \setminus \{*\}$ deformation retracts to a point
- Base $(S^3/\mathbb{Z}_4) \setminus S^1_H$ deformation retracts to Hopf fiber $(S^1_H)'$
- ∂X° deformation retracts to three-manifold $\mathbb{E} \hookrightarrow M_3 \to (S^1_H)'$

Introduction Defect Group and Higher Symmetries Global Form of Flavor Symmetries 2-Group Symmetries 2-Group Symmetries 2-groups and Mayer-Vietoris Example: 5d Spin(8 + 2m) with 2m Vectors

(Example Continued)

The Hopf circle (S¹_H)' links both S¹_H and the bulk ℙ¹, their monodromies are

$$M_{I_m^*}=\left(egin{array}{cc} -1 & -m \ 0 & -1 \end{array}
ight), \qquad M_{I_{4m}}=\left(egin{array}{cc} 1 & 4m \ 0 & 1 \end{array}
ight)$$

• Therefore ∂X° deformation retracts to three-manifold $\mathbb{E} \hookrightarrow M_3 \to (S^1_H)'$ with monodromy

$$M=\left(egin{array}{cc} -1 & -5m \ 0 & -1 \end{array}
ight)$$

We conclude

$$\mathsf{Tor} \ H_1(\partial X^\circ) = \begin{cases} \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_4 \ , & m \in 2\mathbb{Z} \\ \mathbb{Z}_4 \oplus \mathbb{Z}_4 \ , & m \in 2\mathbb{Z} + 1 \end{cases}$$

Introduction Defect Group and Higher Symmetries Global Form of Flavor Symmetries 2-Group Symmetries 2-Group Symmetries 2-groups and Mayer-Vietoris Example: 5d Spin(8 + 2m) with 2m Vectors

(Example Continued)

For odd *m* we have:

For even *m* we have:

The flavor symmetry is $G=Sp(2m)/\mathbb{Z}_2$ [Apruzzi, Bhardwaj, Oh, Schafer-Nameki, 2021]

When m odd we have a non-trivial 2-group symmetry.

Conclusion and Omissions

- We considered SQFTs geometrically engineered in M-theory
- Geometry boundaries contained ADE singularities
- Motivated by Orbifold Homology we gave a prescription in singular homology to compute the 0-form, 1-form and 2-group symmetries of the SQFT
- In 2203.10022 we systematically study the non-compact cycles of elliptic threefolds and compute anomalies for 1-form symmetries via triple intersections in geometry
- In 2203.10102 we further analyze G₂ spaces constructed topologically as uplifts of D6 brane configurations

Outlook

- Cutting and Gluing for global models
- Anomalies via differential orbifold homology and the formalism of symmetry TFTs
- *n*-groups