0/1-Form and 2-Group Symmetries via Boundary Geometries

Max Hübner舞Penn

2203.10022 with David R. Morrison, Sakura Schäfer-Nameki and Yi-Nan Wang 2203.10102 with Mirjam Cvetič, Jonathan J. Heckman, Ethan Torres

Imperial College London, Quiver Meeting

June $3^{\text {rd }} 2022$

Motivation

- Geometric Engineering:

$$
\text { SQFT } \hookrightarrow \underset{\text { (Branes, Singularities....) }}{\text { String Theory }} \rightarrow \text { SQFT }
$$

- Correspondences/Dictionary:

Operators, Symmetries,... \leftrightarrow Geometry (Topology, Diff, Riemannian,...)

- GKSW: Global Symmetry \rightarrow Topological Defects
- Today's focus: Higher-Symmetries \& Topological Structures
[Heckman, Lawrie, Lin, Zhang, Zoccarato, 2022], [Del Zotto, García Etxebarria, Schäfer-Nameki, 2022], [Del Zotto,
Heckman, Meynet, Moscrop, Zhang, 2022], [Bhardwaj, Giacomelli, Hübner, Schäfer-Nameki, 2021], [Apruzzi,
Bhardwaj, Oh, Schafer-Nameki, 2021], [Apruzzi, Bhardwaj, Gould, Schäfer-Namek, 2021], [Apruzzi, Dierigl, Lin,
2020], [Morrison, Schäfer-Nameki, Willett, 2020], [Del Zotto, Ohmori, 2020], [Albertini, Del Zotto, García
Etxebarria, Hosseini, 2020], [Cvetič, Dierigl, Lin, Zhang, 2021], [Del Zotto, Heckman, Park, Rudelius, 2015], ...
- This Presentation:

M-theory + Singularities \leftrightarrow 7d, 5d, 4d SQFTs
Topological Data \leftrightarrow 0/1-form, 2-group Symmetries

- Generic Geometric Set-Up:

- Geometries X : Elliptic CY_{3}, Toric $\mathbb{C}^{3} / \Gamma, G_{2}$-Spaces

Overview

(1) Introduction
(2) Defect Group and Higher Symmetries
(3) Global Form of Flavor Symmetries
(4) 2-Group Symmetries
(5) Conclusion, Omissions and Outlook

Defect Group (Field Theory) ${ }_{D}$

- Defect Group: $\mathfrak{D}=\oplus_{p} \mathfrak{D}_{p}$
- Phase ambiguity in correlation functions [Seiberg, Taylor, 2011]

with $\alpha=\left\langle\mathfrak{D}_{p}, \mathfrak{D}_{D-p-2}\right\rangle$.
- Polarizations $\wedge \subset \mathfrak{D}$ determine absolute theories [Gaiotto, Moore, Neitzke, 2010], [Aharony, Seiberg, Tachikawa, 2013], [Gukov, Hsin, Pei, 2020]
- The higher symmetries are then the Pontryagin dual Λ^{\vee}

Defect Group (M-theory on X)

- $\mathcal{D}_{p}=\mathcal{D}_{p}^{\mathrm{M} 2} \oplus \mathcal{D}_{p}^{\mathrm{M} 5}$
- M2, M5 on relative cycles [Morrison, Schäfer-Nameki, Willett, 2020], [Albertini, Del Zotto, García Etxebarria, Hosseini, 2020], [Del Zotto, Heckman, Park, Rudelius, 2015]

$$
\begin{aligned}
& \mathcal{D}_{p}^{\mathrm{M} 2}=\left.\operatorname{Tor} \frac{H_{3-p}(X, \partial X)}{H_{3-p}(X)} \cong \operatorname{Tor} H_{3-p-1}(\partial X)\right|_{\text {triv }} \\
& \mathcal{D}_{p}^{\mathrm{M} 5}=\left.\operatorname{Tor} \frac{H_{6-p}(X, \partial X)}{H_{6-p}(X)} \cong \operatorname{Tor} H_{6-p-1}(\partial X)\right|_{\text {triv }}
\end{aligned}
$$

- $\langle\cdot, \cdot\rangle \leftrightarrow$ Linking Pairing $\ell(\cdot, \cdot)$ in ∂X

Example: M-theory on Local K3s

- Local K3: $X \rightarrow \mathbb{C}$ with singularity of Kodaira type Φ at $z \in \mathbb{C}$

- Boundary $\partial X \rightarrow S^{1}$ with monodromy M_{1}, we use

$$
0 \rightarrow \operatorname{coker}\left(M_{n}-1\right) \rightarrow H_{n}(\partial X) \rightarrow \operatorname{ker}\left(M_{n-1}-1\right) \rightarrow 0
$$

- $\mathcal{D}_{1}^{\mathrm{M} 2}=\mathcal{D}_{4}^{\mathrm{M} 5}=\operatorname{Tor} \mathrm{H}_{2}(X, \partial X) / H_{2}(X) \cong \operatorname{Tor} \operatorname{Coker}\left(M_{1}-1\right)=\langle\mathfrak{T}\rangle$
- X engineers 7d SYM with gauge algebra \mathfrak{g}_{ϕ}
- Defect group $\mathcal{D}=\langle\mathfrak{T}\rangle_{1}^{\mathrm{M} 2} \oplus\langle\mathfrak{T}\rangle_{4}^{\mathrm{M} 5}$

(Local K3s Continued)

- We have determined the defect group, now determine maximally mutually local subgroups
- Resolve Kodaira Singularity $\widetilde{X} \rightarrow X$, exceptional curves $C_{\alpha_{i}}$
- Dualize to linear forms via intersection pairing

$$
\begin{array}{lrl}
\alpha: H_{2}(\widetilde{X}) \rightarrow H_{2}(\widetilde{X})^{*}, & C_{\alpha_{i}} \mapsto\left(C_{\alpha_{i}}, \cdot\right), \\
\beta: H_{2}(\widetilde{X}, \partial X) \rightarrow H_{2}(\widetilde{X})^{*}, & \widehat{\mathfrak{T}} & \mapsto(\widehat{\mathfrak{T}}, \cdot)
\end{array}
$$

where $\operatorname{Im}(\alpha) \subset \operatorname{Im}(\beta)$.

- Thimbles \mathfrak{T} admit compact representatives in $H_{2}(\widetilde{X}, \mathbb{Q} / \mathbb{Z})$

(Local K3s Continued)

Example of compact representatives for Kodaira Thimbles for singularities of Kodaira type $\Phi=I_{n}, I_{2 n-3}^{*}(\mathfrak{g}=\mathfrak{s u}, \mathfrak{s o})$

$$
\begin{gathered}
\mathfrak{T}_{I_{n}}=\frac{1}{n} \sum_{i=1}^{n-1} i C_{\alpha_{i}} \\
\mathfrak{T}_{I_{n}} \cdot \mathfrak{T}_{I_{n}}=1 / n
\end{gathered}
$$

$$
\mathfrak{T}_{I_{2 n-3}^{*}}=\frac{1}{4} C_{\alpha_{2 n+1}}+\frac{3}{4} C_{\alpha_{2 n}}+\frac{1}{2} \sum_{i=1}^{n} C_{\alpha_{2 i-1}}
$$

$$
\mathfrak{T}_{12 n-3}^{*} \cdot \mathfrak{T}_{I_{2 n-3}^{*}}=1 / 4,3 / 4 \quad(n=\text { odd }, \text { even })
$$

\Rightarrow Talk at Freiburg Simon's Meeting 8th June

Example (Continued)

- Non-trivial self-linking/intersection $\ell(\partial \mathfrak{T}, \partial \mathfrak{T})=\mathfrak{T} \cdot \mathfrak{T} \neq 0$
- Elements of $\mathcal{D}_{1}^{\mathrm{M} 2}, \mathcal{D}_{4}^{\mathrm{M} 5}$ generically mutually non-local
- Choose electric polarization $\mathcal{D}_{1}^{\mathrm{M} 2}$ (throughout this talk)
- Gauge group is simply connected G_{Φ} with algebra \mathfrak{g}_{Φ}
- Engineered 7d SYM theory with gauge group G_{Φ}
- Wilson line operators $\mathcal{D}_{1}^{\mathrm{M} 2}$ acted on by 1 -form symmetry $Z_{G_{\Phi}}$
- This example generalizes straightforwardly.

0-Form Flavor Symmetries

- When are flavor symmetries present?
- Non-compact ADE loci (= flavor branes) \rightarrow Flavor symmetries
- Naive (non-abelian) flavor symmetry \widetilde{G}_{F} :

- Flavor Wilson lines \rightarrow global form of flavor symmetry
- Gauge Wilson lines: non-compact two-cycles in X fibered by vanishing cycles
- Flavor Wilson lines: compact two-cycles in ∂X fibered by vanishing cycles
- Define $K=\cup_{i} K_{i}$ as ADE locus in boundary ∂X
- Define the tube T_{K} and smooth boundary $\partial X^{\circ}=\partial X \backslash K$
- Locally $T_{K} \cap \partial X^{\circ} \cong \cup_{i} K_{i} \times S^{3} / \Gamma_{i}$

- ADE: Tor $H_{1}\left(S^{3} / \Gamma_{i}\right)=Z_{\widetilde{G}_{i}}$
- Naive Flavor Center

$$
Z_{\widetilde{G}_{F}}=\operatorname{Tor} H_{1}\left(T_{K} \cap \partial X^{\circ}\right) \cong Z_{\widetilde{G}_{1}} \oplus Z_{\widetilde{G}_{2}} \oplus Z_{\widetilde{G}_{3}} \oplus \ldots
$$

Flavor Wilson Lines

- Mayer-Vietoris sequence for covering $\partial X=\partial X^{\circ} \cup T_{K}$

$$
\ldots \rightarrow H_{n}\left(\partial X^{\circ} \cap T_{K}\right) \xrightarrow{\iota_{n}} H_{n}\left(\partial X^{\circ}\right) \oplus H_{n}\left(T_{K}\right) \rightarrow H_{n}(\partial X) \xrightarrow{\partial_{n}} \ldots
$$

- Flavor Wilson lines

$$
\begin{aligned}
Z_{G_{F}} & \cong \operatorname{Tor} \operatorname{Im}\left(\partial_{2}: H_{2}(\partial X) \rightarrow H_{1}\left(\partial X^{\circ} \cap T_{K}\right) \cong Z_{\widetilde{G}_{F}}\right) \\
& =\operatorname{Tor} \operatorname{Ker}\left(\iota_{1}: Z_{\widetilde{G}_{F}} \cong H_{1}\left(\partial X^{\circ} \cap T_{K}\right) \rightarrow H_{1}\left(\partial X^{\circ}\right) \oplus H_{1}\left(T_{K}\right)\right)
\end{aligned}
$$

\equiv two-cycles fibered by vanishing one-cycles of the ADE singularities

Example: $5 \mathrm{~d} T_{N}$ Theory

- $X=\mathbb{C}^{3} / \mathbb{Z}_{N} \times \mathbb{Z}_{N}$ where $\left(\omega^{N}=\eta^{N}=1\right)$

$$
\left(z_{1}, z_{2}, z_{3}\right) \sim\left(\omega z_{1}, \eta z_{2},(\omega \eta)^{-1} z_{3}\right)
$$

Three A_{N-1} planes $z_{i}=z_{j}=0$. Trivial 1-form symmetry [Tian, Wang, 2021], [Del Zotto, Heckman, Meynet, Moscrop, Zhang, 2022]

- Flavor algebra $\mathfrak{s u}(N)^{3}$
- Toric coordinates: $p_{i}=\left|z_{i}\right|^{2}$ and $\theta_{i}=\arg z_{i}$, three circle worths of A_{N-1} singularities in ∂X

(T_{N} Continued)

- Trivial $T^{3}=S_{1}^{1} \times S_{2}^{1} \times S_{3}^{1}$ fibration, following one-cycles collapse at ADE singularities

$$
\begin{array}{ll}
P_{1}: & \gamma_{1}=\left(S_{2}^{1}-S_{3}^{1}\right) / N \\
P_{2}: & \gamma_{2}=\left(S_{3}^{1}-S_{1}^{1}\right) / N \\
P_{3}: & \gamma_{3}=\left(S_{1}^{1}-S_{2}^{1}\right) / N
\end{array}
$$

- Relative two-cycles \mathfrak{T}_{i} fibered by γ_{i} glue to two-cycle Σ

(T_{N} Continued)

- Torsional two-cycles $H_{2}(\partial X) \cong \mathbb{Z}_{N}$ generated by Σ
- Diagonal embedding

$$
\partial_{2}: \mathbb{Z}_{N} \cong H_{2}(\partial X) \rightarrow H_{1}\left(\partial X^{\circ} \cap T_{K}\right) \cong \mathbb{Z}_{N}^{3}
$$

- Flavor Symmetry and Center [Bhardwaj, 2021]

$$
G_{F}=S U(N)^{3} / \mathbb{Z}_{N} \times \mathbb{Z}_{N}, \quad Z_{G_{F}} \cong \operatorname{Im} \partial_{2} \cong \mathbb{Z}_{N}
$$

- $T_{3}=E_{6}$ Minahan-Nemeschansky, $G_{F}=S U(3)^{3} / \mathbb{Z}_{3}^{2}$ is compatible with enhancement to $G_{F}=E_{6} / \mathbb{Z}_{3}$. [Bhardwaj, 2021]

Example: $\left(G_{\text {ADE }}, G_{\text {ADE }}\right)$ Conformal Matter

- Elliptic three-fold $\mathbb{E} \hookrightarrow X_{3} \rightarrow B=\mathbb{C}^{2}$ [Del Zotto, Heckman, Tomasiello, Vafa, 2014]
- Discriminant Locus Φ_{L} on $\mathbb{C} \times\{0\}$ and Φ_{R} on $\{0\} \times \mathbb{C}$

- Boundary five-manifold $\mathbb{E} \hookrightarrow \partial X_{3} \rightarrow S^{3}$ where

$$
T^{2}=S_{L}^{1} \times S_{R}^{1} \hookrightarrow S^{3} \rightarrow[0,1]
$$

- Discriminant locus consists of two linking circles in S^{3} (Hopf link)

(Example Continued)

- Now characterize the spectrum of two-cycles
- Excise the singular fibers

$$
\mathbb{E} \hookrightarrow \partial X^{\circ} \rightarrow S_{L}^{1} \times S_{R}^{1}
$$

- Short exact sequence for spaces $X \rightarrow S^{1}$ fibered over circles

$$
0 \rightarrow \operatorname{coker}\left(M_{n}-1\right) \rightarrow H_{n}(X) \rightarrow \operatorname{ker}\left(M_{n-1}-1\right) \rightarrow 0
$$

where M_{n} is the monodromy in homology in degree n.

- Monodromies $M_{\Phi_{L}}, M_{\Phi_{R}}$ about S_{L}^{1}, S_{R}^{1} respectively, it follows

$$
\text { Tor } H_{1}\left(\partial X^{\circ}\right)=\text { Tor } \frac{\mathbb{Z}^{2}}{\operatorname{Im}\left(M_{\Phi_{L}}-1\right) \cup \operatorname{Im}\left(M_{\Phi_{R}}-1\right)}
$$

(Example Continued)

- Here Tor $H_{1}\left(\partial X^{\circ}\right)$ characterized one-cycles which collapse at both discriminant components
- (SU(n), SU(m)) Conformal Matter (=Bifundamental Matter)

$$
G_{F}=\frac{S U(n) \times S U(m)}{\mathbb{Z}_{\operatorname{gcd}(n, m)}}
$$

- More generally $G_{F}=G_{L} \times G_{R} / Z_{\text {diag }}$

2-Groups

- Two key short exact sequence (and Postnikov class) [Lee, ohmori, Tachikawa, 2021], [Benini, Cordova, Hsin, 2019],

$$
\begin{aligned}
& 0 \rightarrow \mathcal{C} \rightarrow Z_{\widetilde{G}_{F}} \rightarrow Z_{G_{F}} \rightarrow 0 \\
& 0 \rightarrow \mathcal{C}^{\vee} \rightarrow \widetilde{\mathcal{A}}^{\vee} \rightarrow \mathcal{A}^{\vee} \rightarrow 0
\end{aligned}
$$

- $Z_{G_{F}}$: Center Flavor Symmetry
- $Z_{\widetilde{G}_{F}}$: Naive Center Flavor Symmetry
- \mathcal{A}^{\vee} : Line Operators modulo screening by local operators
- $\widetilde{\mathcal{A}}^{\vee}$: Line Operators modulo screening by local operators transforming in reps of $Z_{G_{F}}$
- \mathcal{C}^{\vee} : Line Operators in the kernel of $\widetilde{\mathcal{A}}^{\vee} \rightarrow \mathcal{A}^{\vee}$

Orbifold Homology

$$
0 \rightarrow \mathcal{C}^{\vee} \rightarrow \widetilde{\mathcal{A}}^{\vee} \rightarrow \mathcal{A}^{\vee} \rightarrow 0
$$

- Equivariant Case: Global quotient $X=Y / \Gamma, Y$ contractible $\widetilde{\mathcal{A}}^{\vee}:$ M2 branes wrapped on $H_{1}^{\text {equiv }}(\partial X)$
- Short exact sequence (projection onto singular homology):

$$
0 \rightarrow \operatorname{ker} p \rightarrow H_{1}^{\text {equiv }}(\partial X) \xrightarrow{p} H_{1}(\partial X) \rightarrow 0
$$

- Identifications:

$$
\begin{aligned}
\mathcal{A}^{\vee} & =H_{1}(\partial X) & & \text { (line operators/defects) } \\
\mathcal{C}^{\vee} & =\operatorname{ker} p & & \text { (twisted sector) }
\end{aligned}
$$

- General Case: Equivariant Homology \rightarrow Orbifold Homology
$\widetilde{\mathcal{A}}^{\vee}$: M2 branes wrapped on $H_{1}^{\text {orb }}(\partial X)$

Codimension-4 ADE Singularities

$$
\begin{gathered}
0 \rightarrow \mathcal{C}^{\vee} \rightarrow \widetilde{\mathcal{A}}^{\vee} \rightarrow \mathcal{A}^{\vee} \rightarrow 0 \\
0 \rightarrow H_{1}^{\text {twist }}(\partial X) \rightarrow H_{1}^{\text {orb }}(\partial X) \xrightarrow{p} H_{1}(\partial X) \rightarrow 0
\end{gathered}
$$

- Characterization in singular homology [Thurston, 1980], [Moerdij, Pronk, 1997]

$$
H_{1}^{\text {orb }}(\partial X) \cong H_{1}\left(\partial X^{\circ}\right)
$$

where $\partial X^{\circ}=\partial X \backslash K$ with ADE locus K.

- But we encountered $H_{1}\left(\partial X^{\circ}\right)$ earlier already...

2-groups and Mayer-Vietoris

- Mayer-Vietoris sequence for covering $\partial X=\partial X^{\circ} \cup T_{K}$
$\ldots \rightarrow H_{n}\left(\partial X^{\circ} \cap T_{K}\right) \xrightarrow{\iota_{n}} H_{n}\left(\partial X^{\circ}\right) \oplus H_{n}\left(T_{K}\right) \rightarrow H_{n}(\partial X) \xrightarrow{\partial_{n}} \ldots$
- Tube T_{K} deformation retracts to ADE locus K
- ADE locus K has simple topology (eg. circles in 5d examples)

- We derive the exact sequence
$0 \rightarrow \operatorname{ker}\left(\iota_{1}\right) \rightarrow H_{1}\left(\partial X^{\circ} \cap T_{K}\right) \xrightarrow{\iota_{1}} H_{1}\left(\partial X^{\circ}\right) \oplus H_{1}\left(T_{K}\right) \rightarrow H_{1}(\partial X) \rightarrow 0$.
- Which maps (after removing trivial free factors and reversing arrows) to the symmetry relations

$$
0 \rightarrow \mathcal{A} \rightarrow \widetilde{\mathcal{A}} \rightarrow Z_{\widetilde{G}_{F}} \rightarrow Z_{G_{F}} \rightarrow 0
$$

- By general properties of exact sequences we have the split

$$
\begin{aligned}
& 0 \rightarrow \mathcal{C} \rightarrow Z_{\widetilde{G}_{F}} \rightarrow Z_{G_{F}} \rightarrow 0 \\
& 0 \rightarrow \mathcal{C}^{\vee} \rightarrow \widetilde{\mathcal{A}}^{\vee} \rightarrow \mathcal{A}^{\vee} \rightarrow 0
\end{aligned}
$$

- Which is contained in the geometry as

$$
\begin{aligned}
0 & \rightarrow \operatorname{ker}\left(\iota_{1}\right) \rightarrow H_{1}\left(\partial X^{\circ} \cap T_{K}\right) \xrightarrow{\iota_{1}} \frac{H_{1}\left(\partial X^{\circ} \cap T_{K}\right)}{\operatorname{ker}\left(\iota_{1}\right)} \rightarrow 0, \\
0 & \rightarrow \frac{H_{1}\left(\partial X^{\circ} \cap T_{K}\right)}{\operatorname{ker}\left(\iota_{1}\right)} \rightarrow H_{1}\left(\partial X^{\circ}\right) \oplus H_{1}\left(T_{K}\right) \rightarrow H_{1}(\partial X) \rightarrow 0 .
\end{aligned}
$$

- Postnikov class is the Bockstein of the extension class for the SES characterizing the global form of the flavor symmetry
- $\Rightarrow 0$-form, 1-form, 2-group symmetries from cutting and gluing of orbifolds

Example: $5 \mathrm{~d} \operatorname{Spin}(8+2 m)$ with $2 m$ Vectors

- Elliptic $X_{3} \rightarrow B, B=\mathcal{O}_{\mathbb{P}^{1}}(-4)$
- Discriminant Locus

$$
\begin{aligned}
\mathbb{P}^{1} & : I_{m}^{*, \mathrm{~s}} \\
F \subset \mathcal{O}_{\mathbb{P}^{1}}(-4) & : I_{4 m}^{\text {ns }}
\end{aligned}
$$

$$
\begin{gathered}
\mathfrak{s o}_{8+2 m} \\
4-\left[\mathfrak{s p}_{2 m}\right]
\end{gathered}
$$

- $(\mathrm{n}) \mathrm{s}=(\mathrm{non})$-split
- At Ramification point p one-cycle B collapses

(Example Continued)

$$
\mathbb{E} \hookrightarrow \partial X_{3} \rightarrow S^{3} / \mathbb{Z}_{4}=\partial \mathcal{O}_{\mathbb{P} 1}(-4)
$$

- Tor $H_{1}(\partial X) \cong \mathbb{Z}_{4} \oplus \mathbb{Z}_{2}$: Hopf fiber of the base S_{3} / \mathbb{Z}_{4} and B
- Tor $H_{1}\left(\partial X^{\circ}\right)$: Excising singular fibers, implies for base

$$
S^{1} \hookrightarrow S^{3} / \mathbb{Z}_{4} \rightarrow S^{2} \backslash\{*\}
$$

- Now $S^{2} \backslash\{*\}$ deformation retracts to a point
- Base $\left(S^{3} / \mathbb{Z}_{4}\right) \backslash S_{H}^{1}$ deformation retracts to Hopf fiber $\left(S_{H}^{1}\right)^{\prime}$
- ∂X° deformation retracts to three-manifold $\mathbb{E} \hookrightarrow M_{3} \rightarrow\left(S_{H}^{1}\right)^{\prime}$

(Example Continued)

- The Hopf circle $\left(S_{H}^{1}\right)^{\prime}$ links both S_{H}^{1} and the bulk \mathbb{P}^{1}, their monodromies are

$$
M_{l_{m}^{*}}=\left(\begin{array}{cc}
-1 & -m \\
0 & -1
\end{array}\right), \quad M_{l_{4 m}}=\left(\begin{array}{cc}
1 & 4 m \\
0 & 1
\end{array}\right)
$$

- Therefore ∂X° deformation retracts to three-manifold $\mathbb{E} \hookrightarrow M_{3} \rightarrow\left(S_{H}^{1}\right)^{\prime}$ with monodromy

$$
M=\left(\begin{array}{cc}
-1 & -5 m \\
0 & -1
\end{array}\right)
$$

- We conclude

$$
\text { Tor } H_{1}\left(\partial X^{\circ}\right)= \begin{cases}\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{4}, & m \in 2 \mathbb{Z} \\ \mathbb{Z}_{4} \oplus \mathbb{Z}_{4}, & m \in 2 \mathbb{Z}+1\end{cases}
$$

(Example Continued)

$$
\begin{aligned}
& 0 \rightarrow \mathcal{C} \rightarrow Z_{\widetilde{G}_{F}} \rightarrow Z_{G_{F}} \rightarrow 0 \\
& 0 \rightarrow \mathcal{C}^{\vee} \rightarrow \widetilde{\mathcal{A}}^{\vee} \rightarrow \mathcal{A}^{\vee} \rightarrow 0
\end{aligned}
$$

For odd m we have:

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \rightarrow 0 \rightarrow 0 \\
0 \rightarrow & \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \oplus \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \rightarrow 0
\end{aligned}
$$

For even m we have:

$$
\begin{gathered}
0 \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \rightarrow 0 \rightarrow 0 \\
0 \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \rightarrow 0
\end{gathered}
$$

The flavor symmetry is $G=S p(2 m) / \mathbb{Z}_{2}$ [Apruzzi, Bhardwaj, Oh, Schafer-Nameki, 2021]
When m odd we have a non-trivial 2-group symmetry.

Conclusion and Omissions

- We considered SQFTs geometrically engineered in M-theory
- Geometry boundaries contained ADE singularities
- Motivated by Orbifold Homology we gave a prescription in singular homology to compute the 0-form, 1-form and 2-group symmetries of the SQFT
- In 2203.10022 we systematically study the non-compact cycles of elliptic threefolds and compute anomalies for 1-form symmetries via triple intersections in geometry
- In 2203.10102 we further analyze G_{2} spaces constructed topologically as uplifts of D6 brane configurations

Defect Group and Higher Symmetries Global Form of Flavor Symmetries 2-Group Symmetries Conclusion, Omissions and Outlook

Outlook

- Cutting and Gluing for global models
- Anomalies via differential orbifold homology and the formalism of symmetry TFTs
- n-groups

