Higgs Bundles for G₂-manifolds and Brane/Particle Probes

Max Hübner

1812.06072, 2009.07136 with Andreas Braun, Sebastjan Cizel and Sakura Schäfer-Nameki

Special Holonomy: Progress and Open Problems 2021

13. September, 2021

Overview

- 1 Introduction and Motivation
- 2 ALE-Fibered, Local G₂ Manifolds
- 3 Effective 7d Physics
- 4 Brane and Particle Probes
- 5 Fully Reducible and Exact Backgrounds
- 6 Irreducible and Closed Backgrounds
- Concluding Remarks

Introduction and Motivation

Introduction and Motivation

- M-theory on a compact G₂ manifolds engineers a 4d theory with minimal supersymmetry. [Joyce, 1996], [Kovalev, 2003], [Corti, Haskins, Nordström, Pacini, 2015], [Joyce, Karigiannis, 2017], [Acharya, 1998], [Halverson, Morrison, 2015], [Braun, Schäfer-Nameki, 2017], [Braun, Del Zotto, 2017], [Xu, 2020]
- The gauge theory sector can be isolated by considering non-compact (local) G₂ manifolds. [Bryant, Salamon, 1989], [Acharya 2000], [Acharya, Witten, 2001], [Witten, 2001], [Atiyah, Witten, 2003], [Pantev, Wijnholt, 2009], [Braun, Cizel, H, Schäfer-Nameki, 2018], [Barbosa, Cvetič, Heckman, Lawrie, Torres, Zoccarato, 2019], [Cvetič, Heckman, Rochais, Torres, Zoccarato 2020], [H, 2020], [Karigiannis, Lotay, 2020]

Introduction and Motivation

- F-theory methods relying on Higgs bundles and their spectral covers can be applied to study the physics of local G₂ manifolds. [Beasley, Heckman, Vafa, 2009], [Hayashi, Kawano, Tatar, Watari, 2009], [Marsano, Saulina, Schäfer-Nameki, 2010], [Blumenhagen, Grimm, Jurke, Weigand, 2010], [Donagi, Wijnholt, 2011], [Donagi, Wijnholt, 2014]. [Cvetič, Heckman, Rochais, Torres, Zoccarato 2020]
- Supersymmetric sigma models probing the geometries give insight into non-perturbative classical effects. [Alvarez-Gaume, Witten, 1981], [Witten, 1982], [Pantev, Wijnholt, 2009], [Atiyah, Witten, 2003], [Pantev, Wijnholt, 2009], [Braun, Cizel, H. Schäfer-Nameki, 2018], [H. 2020], [Cvetič, Heckman, Torres, Zoccarato, 2021]

ALE-Fibered, Local G₂ Manifolds Questions (Physics) Questions (Geometry)

ALE-Fibered, Local G₂ Manifolds

Geometric data

Local
$$G_2$$
 Manifold: $\widetilde{\mathbb{C}^2/\Gamma_{ADE}} \hookrightarrow X_7 \to M_3$ Fibral 2-Spheres: $\sigma_I \in H_2(\widetilde{\mathbb{C}^2/\Gamma_{ADE}}, \mathbb{R})$ Hyperkähler Triple: $(\omega_1, \omega_2, \omega_3) \in H^2(\widetilde{\mathbb{C}^2/\Gamma_{ADE}}, \mathbb{R})$

The Higgs field collects the Kähler periods

Higgs field:
$$\phi_I = \left(\int_{\sigma_I} \omega_i\right) dx^i \in \Omega^1(M_3)$$

where $I = 1, \ldots, \mathsf{rank} \, \mathfrak{g}_{ADE}$.

ALE-Fibered, Local G₂ Manifolds Questions (Physics) Questions (Geometry)

Singularities and Supersymmetric 3-cycles

Singularity Enhancement at $x \in M_3$: $\phi_I(x) = 0$ (codim. 7) Morse-Bott Degenerate Set-up: $\phi_I|_{S^1} = 0$ (codim. 6)

The vanishing cycles trace out 3-spheres:

ALE-Fibered, Local G₂ Manifolds Questions (Physics) Questions (Geometry)

Questions 1

Local to Global.

- What is the physics of a local patch containing a single component of $\phi = 0$? Zero mode analysis in an ultra local patch on M_3 . [Acharya, Witten, 2001], [Witten, 2001], [Barbosa, Cvetič, Heckman, Lawrie, Torres, Zoccarato, 2019]
- How does the physics of ultra local patches glue globally across *M*₃? M2-Instanton analysis. [Harvey, Moore, 1999], [Pantev, Wijnholt, 2009], [Braun, Cizel, H, Schäfer-Nameki, 2018], [H, 2020]
- How does the local analysis apply to compact G₂ manifolds? Analysis of the local model associated to TCS G₂ manifolds.

[Braun, Cizel, H, Schäfer-Nameki, 2018]

ALE-Fibered, Local G₂ Manifolds Questions (Physics) Questions (Geometry)

Questions 2

- What do the supersymmetric 3-spheres descend to in the Higgs bundle? [Acharya, Witten, 2001], [Pantev, Wijnholt, 2009]
- What is the global structure of the network of supersymmetric 3-spheres? [Fukaya, 1999], [Pantev, Wijnholt, 2009], [Braun, Cizel, H, Schäfer-Nameki, 2018], [H, 2020]

ALE-Fibered, Local G₂ Manifolds Questions (Physics) Questions (Geometry)

Work Done

Effective 7d Physics Peturbative Approach

Effective 7d Physics

M-theory on the local G_2 manifold X_7 with ADE singularities gives

Partially twisted 7d SYM on $\mathbb{R}^{1,3} imes M_3$ with gauge group G_{ADE}

Topological twist

 $SU(2)_{M_3} \times SU(2)_R \rightarrow SU(2)_{\text{twist}} = \text{diag} \left(SU(2)_{M_3}, SU(2)_R \right)$ Complex bosonic 1-form on M_3 : $\varphi = \phi + iA \in \Omega^1(M_3, \mathfrak{g}_{\text{ADE}})$

Effective 7d Physics Peturbative Approach

Supersymmetric backgrounds are solutions of a Hitchin system:

$$i(F_A)_{ij} + [\phi_i, \phi_j] = 0, \qquad (d_A \phi)_{ij} = 0, \qquad *d_A * \phi = 0$$

For a given background zero modes along M_3 are determined by

$${\cal H} = rac{1}{2} \left\{ Q, Q^{\dagger}
ight\} \,, \qquad Q = d + arphi$$

and counted by the cohomologies

$$H^*_Q(M_3,\mathfrak{g}_{ADE}).$$

The operator Q is a complex flat connection.

Effective 7d Physics Peturbative Approach

Alternatively, consider approximate zero modes

 $\chi_a \in \Omega^*(M_3, \mathfrak{g}_{\mathsf{ADE}}) \quad \leftrightarrow \quad \mathsf{Codimension 7 Singularity}$

Non-perturbative masses corrections are generated by M2 brane instantons. The 7d SYM determines these mass corrections to M_{ab} and zero modes are recovered from Ker M_{ab} .

$$M_{ab} = \int_{M_3} \langle \chi_b, Q \chi_a \rangle$$

Morse-Bott/Novikov Theory and colored SQMs

Morse-Bott/Novikov Theory and colored SQMs

Motivation: M2 brane probing the local G_2 manifold descends to a particle (W-boson) probing M_3 when reducing along ALE fibers.

We find a colored supersymmetric quantum mechanics (SQM) probing the Higgs bundle.

Relevant Data: Physical Hilbertspace of the SQM are Lie algebra valued forms and supercharge Q is

$$\mathcal{H}_{phys.} = \Lambda(M_3, \mathfrak{g}_{ADE}), \qquad Q = d + \varphi.$$

The colored SQM is an extension of Witten's SQM $_{[Witten, 1982]}$ by an adjoint bundle on the target space.

Morse-Bott/Novikov Theory and colored SQMs

The dynamical fields, mapping from $\mathbb{R}_{ au}$, are

Bosonic coordinates on M_3 : x^i , i = 1, 2, 3Fermions in $x^*(TM_3)$: ψ^i , i = 1, 2, 3Color Fermions in $x^*(adG_{ADE})$: λ^{α} , $\alpha = 1, \dots, \text{dimg}_{ADE}$

Morse-Bott/Novikov Theory and colored SQMs

Perturbative ground states of $H = \frac{1}{2} \{Q, Q^{\dagger}\}$: (x, λ)

Colored instantons are piecewise solutions to the flow equations

$$\dot{x}^i - \phi^i_\lambda = \dot{x}^i - i c^lpha_{\ eta\gamma} \phi^i_lpha ar{\lambda}^eta \lambda^lpha = 0 \,, \qquad D_ au \lambda^lpha = 0$$

Colored instantons are in correspondence to flow trees on M_3 and three-cycles in X_7 . The latter are conjectured to be associatives.

Morse-Bott/Novikov Theory and colored SQMs

The colored SQM simplifies depending on the Higgs field background. Consider Higgs fields solving

$$[\phi_i, \phi_j] = 0$$
, $(d\phi)_{ij} = (*j)_{ij}$, $*d * \phi = \rho$.

The 1-form *j* and 0-form ρ are supported in codimension 2. We also set $d_A = d$ and the adjoint bundle is trivial.

Such backgrounds allow for geometric interpretation and admit a spectral cover description. The eigenvalue 1-forms Λ_I of the Higgs field sweep out

$$\mathcal{C} = \{(x, \Lambda_I(x)) \,|\, x \in M_3)\} \subset T^*M_3$$

Morse-Bott/Novikov Theory and colored SQMs

We distinguish three types of spectral cover.

• Fully reducible and exact: Eigenvalues $\Lambda_I = df_I$ are globally defined and exact on \mathcal{M}_3 . Spectral cover \mathcal{C} is fully reducible, Q = d + df. Morse-Bott theory on \mathcal{M}_3 . [Pantev, Wijnholt, 2009], [Braun, Could B Schole Number 2009]

Cizel, H, Schäfer-Nameki, 2018], [H, 2020]

- Fully reducible and closed: Eigenvalues Λ_I are globally defined on M₃ and closed dΛ = 0. Spectral cover C is fully reducible, Q = d + φ. Novikov theory on M₃. [Pantev, Wijnholt, 2009], [H, 2020]
- Irreducible and closed: Eigenvalues Λ_I are locally defined on \mathcal{M}_3 and mixed by monodromies. Spectral cover \mathcal{C} not fully reducible, $Q = d + \phi$. Novikov theory on covering space of \mathcal{M}_3 . [H, 2020]

Here $\mathcal{M}_3 = \mathcal{M}_3 \setminus \operatorname{sing}(\phi)$.

Reducible and Exact Example: $SU(2) \rightarrow U(1)$ Colored SQM and Witten's SQM Example: Degenerate Cases Yukawa Couplings and Flow Trees

Fully Reducible and Exact Backgrounds

Writing $\phi = df_I \mathfrak{t}^I$ the first class are solutions to Poission's equation

$$\Delta f_I = \rho_I \,,$$

Where the f_l (and their integer sums) are generically Morse.

The supercharge $Q = d + df_I t^I$ and Hamiltonian are trivial at the Lie algebra level. The restrictions

$$Q^{(lpha)}:= \Omega^*(M_3,\mathfrak{g}_{\mathsf{ADE}})\big|_{E^{lpha}} o \Omega^{*+1}(M_3,\mathfrak{g}_{\mathsf{ADE}})\big|_{E^{lpha}}$$

are well defined for all Lie algebra generators E^{α} . We can associate to each E^{α} a Morse theory.

Reducible and Exact Example: $SU(2) \rightarrow U(1)$ Colored SQM and Witten's SQM Example: Degenerate Cases Yukawa Couplings and Flow Trees

Example: $SU(2) \rightarrow U(1)$

Start with A_1 singularity along M_3 and gauge group G = SU(2). The resolution of the singularity is informed by the Higgs field background $\phi \in \Omega^1(M_3, \mathfrak{su}(2))$

$$\phi = df \mathfrak{t} \,, \qquad \Delta f = \rho \,, \qquad \mathfrak{t} = \mathrm{diag}(1,-1) \,.$$

with Morse function f. The A_1 singularity locus is resolved everywhere except df = 0. The gauge groups breaks

SU(2)
ightarrow U(1)

and the adjoint representation decomposes

$$\mathsf{ad}\,\mathfrak{su}(2)\to\mathsf{ad}\,\mathfrak{u}(1)\oplus \mathbf{1}_+\oplus\mathbf{1}_-$$

Reducible and Exact Example: $SU(2) \rightarrow U(1)$ Colored SQM and Witten's SQM Example: Degenerate Cases Yukawa Couplings and Flow Trees

The representations $\mathbf{1}_+ \oplus \mathbf{1}_-$ are spanned by the generators

$$E^{lpha}=\left(egin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}
ight) , \qquad E^{-lpha}=\left(egin{array}{cc} 0 & 0 \\ 1 & 0 \end{array}
ight)$$

The supercharge Q = d + dft restricts to subspaces spanned by $E^{\alpha}, E^{-\alpha}$ as

$$Q^{(\alpha)} = d + 2df \wedge, \qquad Q^{(-\alpha)} = d - 2df \wedge,$$

respectively.

Reducible and Exact Example: $SU(2) \rightarrow U(1)$ Colored SQM and Witten's SQM Example: Degenerate Cases Yukawa Couplings and Flow Trees

Denote the critical points as $Crit(2f) = \{p_i ; i = 1, ..., n\}$ and their Morse indices as $\mu_i = 1, 2$. In coordinates $x(p_i) = 0$ we expand

$$f(x) = \pm c_1 x_1^2 \pm c_2 x_2^2 \pm c_3 x_3^2 + \dots, \qquad c_k > 0,$$

and a single approximate zero mode localizes

$$\chi_{\alpha,i} = \exp(-c_1 x_1^2 - c_2 x_2^2 - c_3 x_3^2) dx^{\mu_i} \otimes E^{\alpha} + \dots$$

where dx^{μ_i} is a μ_i -form. Concentrating on this sector one finds gradient flow line lines connection $\chi_{\alpha,i}$ and $\chi_{\beta,j}$ and this builds a Morse complex.

Reducible and Exact Example: $SU(2) \rightarrow U(1)$ Colored SQM and Witten's SQM Example: Degenerate Cases Yukawa Couplings and Flow Trees

Colored SQM and Witten's SQM

Every root gives a copy of Witten's SQM

Root $\alpha \rightarrow$ Witten's SQM with Morse function $f_{\alpha} = \alpha' f_I$

The Morse-Witten complex associated to a Higgs field ϕ is the collection of the Morse-Witten complexes of all these SQMs.

Denote the number of critical points of f_{α} by n_{α} and the number of roots of \mathfrak{g}_{ADE} by n_r . The set of all perturbative zero modes are

$$\chi_{\alpha,i}$$
 $i=1,\ldots,n_{\alpha}, \quad \alpha=1,\ldots,n_r.$

Reducible and Exact Example: $SU(2) \rightarrow U(1)$ Colored SQM and Witten's SQM Example: Degenerate Cases Yukawa Couplings and Flow Trees

The Morse-Witten complex of the colored SQM is given by

$$0
ightarrow C_{\mu=1} \xrightarrow{Q} C_{\mu=2}
ightarrow 0$$
 .

where the chains \mathcal{C}_{μ} collect all degree $\mu=1,2$ forms

$$C_{\mu} = \bigoplus_{i,\alpha} \chi_{\alpha,i,\mu}$$

The complex is graded by color α .

Reducible and Exact Example: $SU(2) \rightarrow U(1)$ Colored SQM and Witten's SQM Example: Degenerate Cases Yukawa Couplings and Flow Trees

The physical spectrum is characterized by

$$H^1_Q(M_3, \mathfrak{g}_{ADE}) \cong \operatorname{Ker} Q, \qquad H^2_Q(M_3, \mathfrak{g}_{ADE}) \cong \operatorname{CoKer} Q$$

The operator Q in the Morse-Witten complex has the matrix representation

$$M_{\alpha\beta,ij} = \int_{M_3} \langle \chi_{\alpha,i}, Q\chi_{\beta,j} \rangle = \delta_{\alpha+\beta,0} \sum_{\Gamma_{ij}} (\pm)_{\Gamma_{ij}} \exp\left\{-\left[f_{\alpha}(p_i) + f_{\beta}(p_j)\right]\right\}$$

which obeys the selection rules $\alpha + \beta = 0$.

Reducible and Exact Example: $SU(2) \rightarrow U(1)$ Colored SQM and Witten's SQM Example: Degenerate Cases Yukawa Couplings and Flow Trees

Example: $SU(n+2) \rightarrow SU(n) \times U(1)_a \times U(1)_b$

In physically interesting situations the correspondence between roots and SQMs often degenerates.

The Higgs field $\phi = df_a t^a + df_b t^b$ breakes the gauge symmetry

$$SU(n+2) \rightarrow SU(n) \times U(1)_{a} \times U(1)_{b}$$

and the adjoint representation decomposes

$$egin{alred} \operatorname{\sf ad} SU(n+2) &
ightarrow \operatorname{\sf ad} SU(n) \oplus \sum_{q=(q_1,q_2)} ({f n}_{q_1,q_2} \oplus ar{f n}_{-q_1,-q_2}) \ &\oplus \operatorname{\sf ad} U(1)^2 \oplus {f 1}_{0,1} \oplus {f 1}_{0,-1} \end{array}$$

Reducible and Exact Example: $SU(2) \rightarrow U(1)$ Colored SQM and Witten's SQM Example: Degenerate Cases Yukawa Couplings and Flow Trees

The fundamental representations \mathbf{n}_{q_1,q_2} are spanned by n Lie algebra generators carrying the same $U(1)_a \times U(1)_b$ weight. Their associated copy of Witten's SQM are identical

Irreps.
$$\mathbf{R}_q \quad \leftrightarrow \quad$$
 Witten's SQM with $Q = d + q^l df_l$.

With this the number of chiral and conjugate-chiral fields are computed to

Rank $H^1_Q(M_3, \mathbf{R}_q) = \#$ chiral mode in \mathbf{R}_q Rank $H^2_Q(M_3, \mathbf{R}_q) = \#$ conjugate-chiral mode in $\mathbf{\bar{R}}_q$

Reducible and Exact Example: $SU(2) \rightarrow U(1)$ Colored SQM and Witten's SQM Example: Degenerate Cases Yukawa Couplings and Flow Trees

If the source $\rho = q^{I} \rho_{I}$ has k_{\pm} , l_{\pm} postively/negatively charged components, loops respectively one has [Pantev, Wijnholt, 2009]

Rank
$$H^1_Q(M_3, \mathbf{R}_q) = l_+ + k_- - r - 1$$

Rank $H^2_Q(M_3, \mathbf{R}_q) = l_- + k_+ - r - 1$

where r counts the number of negative loops which are independent in homology when embedded in $M_3 \setminus \text{supp } \rho_+$.

The chiral index for matter in \mathbf{R}_q is

$$\chi(M_3, \mathbf{R}_q) = l_+ - l_- + k_- - k_+$$

and whenever $\chi(M_3, \mathbf{R}_q) \neq 0$ the spectrum is chiral.

Reducible and Exact Example: $SU(2) \rightarrow U(1)$ Colored SQM and Witten's SQM Example: Degenerate Cases Yukawa Couplings and Flow Trees

This completes the analysis of supersymmetric 3-spheres connecting two codimension 7 singularities. What about 3-spheres connecting three (or more) codimension 7 singularities?

Reducible and Exact Example: $SU(2) \rightarrow U(1)$ Colored SQM and Witten's SQM Example: Degenerate Cases Yukawa Couplings and Flow Trees

Yukawa Couplings and Flow Trees

The 7d SYM theory gives the Yukawa couplings between three perturbatively massless chiral multiplets to [Braun, Cizel, H, Schäfer-Nameki, 2018]

$$Y_{ijk,\alpha\beta\gamma} = \int_{\mathcal{M}_3} \langle \chi_{\alpha,i}, \left[\chi_{\beta,j}, \chi_{\gamma,k} \right] \rangle$$

which obey the selection rule

$$\alpha + \beta + \gamma = \mathbf{0}$$

This is equivalent to topological consistency in the ALE fibration.

Reducible and Exact Example: $SU(2) \rightarrow U(1)$ Colored SQM and Witten's SQM Example: Degenerate Cases Yukawa Couplings and Flow Trees

Via methods of supersymmetric localization in the colored SQM this overlap integral computes to

$$Y_{ijk,\alpha\beta\gamma} = \delta_{\alpha+\beta+\gamma,0} \sum_{\Gamma_{ijk}} (\pm)_{\Gamma_{ijk}} \exp\left\{-\left[f_{\alpha}(p_{i}) + f_{\beta}(p_{j}) + f_{\gamma}(p_{k})\right]\right\}$$

We find a cup-product on the Morse-Witten complex of the colored $\ensuremath{\mathsf{SQM}}$

$$\cup: \ C_{\mu=1} \times C_{\mu=1} o C_{\mu=2}$$

mapping as

$$(\chi_{\beta,j},\chi_{\gamma,k}) \mapsto \sum_{i,lpha} Y_{ijk,lphaeta\gamma}\chi_{lpha,i}$$

This cup product descends to cohomology $H^*_Q(M_3, \mathfrak{g}_{ADE})$.

Reducible and Exact Example: $SU(2) \rightarrow U(1)$ Colored SQM and Witten's SQM Example: Degenerate Cases Yukawa Couplings and Flow Trees

Comments:

- Flow trees corresponding to three-spheres connecting *n* codimension 7 singularities exist. They correspond to irrelevant couplings in 4d and are not captured by the 7d SYM.
- The spectrum can alternatively be counted by analyzing and counting intersections between components of the spectral cover.
- Yet another way of computing the spectrum is given by excising the source loci and map the problem to de Rham cohomology on a manifold with boundary.
- The presented analysis persists when considering Morse-Bott degenerate cases with matter along circles $\phi|_{S^1} = 0$ with codimension 6 singularities.

Irreducible and Closed Backgrounds

Irreducible and Closed Backgrounds

Consider Higgs fields with an irreducible spectral cover C. This introduces a branch locus B along circles (codim. 2) embedded as knots K_i into M_3

$$\mathcal{B} = \cup_i K_i \subset M_3$$
.

Monodromy along paths linking ${\mathcal B}$

$$\begin{array}{rll} \mbox{Monodromy Action} & : & \phi \to g \phi g^{-1} \\ & \mbox{Color Mixing} & : & E^{\alpha} \to g E^{\alpha} g^{-1} \end{array}$$

Max Hübner Higgs Bundles for G2-manifolds and Brane/Particle Probes

Irreducible and Closed Backgrounds

The monodromy action gives orbits of Lie algebra generators E^{lpha}

$$[E^{\alpha}] = \left\{ E^{\alpha}, g E^{\alpha} g^{-1}, g^2 E^{\alpha} g^{-2}, \ldots \right\}$$

to which one associates an orbit of roots $[\alpha]$.

The ultra local analysis of approximate zero modes is unaltered. We again obtain a Morse-Witten complex

$$0 \to C_{\mu=1} \xrightarrow{Q} C_{\mu=2} \to 0$$
.

which is now graded by color orbits $[\alpha]$.

Irreducible and Closed Backgrounds

The color orbits describe which resolution 2-spheres $\alpha^{I}\sigma_{I} \in H_{2}(\mathbb{C}/\Gamma_{ADE})$ are identified under monodromy.

$$\alpha \sim \beta \ \rightarrow \ \alpha^{I} \sigma_{I} = \beta^{I} \sigma_{I} \,.$$

The cycle $\alpha' \sigma_I$ is homologous to $\beta' \sigma_I$ by moving it some number of times around the branch locus \mathcal{B} .

Monodromies break the gauge symmetry

Commutant of $\phi \rightarrow$ Stabilizer of ϕ

Irreducible and Closed Backgrounds

From the monodromies construct a covering space [Cecotti, Córdova, Vafa, 2011]. Pick a Seifert surface F for the Branch locus $\mathcal{B} = \partial F$. Now glue

$$\mathcal{C} = (M_3 \setminus F) \# \dots \# (M_3 \setminus F)$$

where the number of gluing components equals the order of the monodromy action. This space is topologically equivalent to the spectral cover.

The Higgs field $\alpha' \phi_I$ glues across branch surfaces F to closed 1-forms

$$\phi_{[\alpha]} \in \Omega^1(\mathcal{C})$$

on the spectral cover.

Irreducible and Closed Backgrounds

Degenerate case: the irreducible representations \mathbf{R}_q are grouped by the orbits [q].

These combine to the representation $\mathbf{R}_{[q]}$ under the monodromy reduced gauge symmetry. Associate Higgs field $\phi_{[q]} \in \Omega^1(\mathcal{C})$.

The matter spectrum in the representation $\mathbf{R}_{[q]}$ labelled by [q] is computed by

Rank $H^1_{Nov.}(\mathcal{C}, \phi_{[q]}) = \#$ chiral mode in $\mathbf{R}_{[q]}$ Rank $H^2_{Nov.}(\mathcal{C}, \phi_{[q]}) = \#$ conjugate-chiral mode in $\mathbf{R}_{[q]}$

These numbers are computable in highly symmetric situations.

Summary and Conclusion Outlook: Open Problems

Summary and Conclusion

- We started from an ALE fibered G2 manifold and mapped it to a Higgs bundle.
- M2 branes probing the G2 manifold reduce to particles (W-bosons) probing the Higgs bundle.
- Particle probes associate a quantum mechanical model to the Higgs bundle. This model we dubbed colored SQM.
- We derived Morse-theoretic structures from the colored SQM which describe classical, non-perturbative effects. Quantum effects are not included.
- We characterized the gauge symmetry, spectrum and interactions of the final 4d $\mathcal{N}=1$ gauge theory.

Summary and Conclusion Outlook: Open Problems

Outlook: Open Problems

Construction of Higgs field backgrounds solving

$$[\phi_i, \phi_j] = 0$$
, $(d\phi)_{ij} = (*j)_{ij}$, $*d * \phi = \rho$.

These have singularities modeled on $1/\sqrt{z}$ similar to [Donaldson, 2021] with singularities model on \sqrt{z} .

Summary and Conclusion Outlook: Open Problems

Lift Higgs bundles to geometry. What are the constraints of

Higgs field $\phi \mapsto ALE$ -fibered G2-manifold X_7 .

See [Pantev, Wijnholt, 2009], [Barbosa, 2019].

Summary and Conclusion Outlook: Open Problems

Computation of Q-cohomologies. Find the map

Source Data of $\rho, j \mapsto \operatorname{Rank} H^*_Q(M_3)$.

For reducible and exact Higgs field only topological data enters.

Summary and Conclusion Outlook: Open Problems

Study non-commuting Higgs field configurations

 $[\phi_i,\phi_j]\neq 0\,.$

See [Bielawski, Foscolo, 2020], [Cvetič, Heckman, Rochais, Torres, Zoccarato 2020].

Summary and Conclusion Outlook: Open Problems

End

Max Hübner Higgs Bundles for G₂-manifolds and Brane/Particle Probes

Summary and Conclusion Outlook: Open Problems

Extra Slide: cSQM

Lagrangian

$$\begin{aligned} \mathcal{L} &= \frac{1}{2} \dot{x}^{i} \dot{x}_{i} + i \bar{\psi}^{i} \nabla_{\tau} \psi_{i} + i \bar{\lambda}^{\alpha} D_{\tau} \lambda_{\alpha} + \frac{i}{2} \left(F_{ij} \right)_{\lambda} \bar{\psi}^{i} \psi^{j} - \frac{1}{2} R_{ijkl} \psi^{i} \bar{\psi}^{j} \psi^{k} \bar{\psi}^{l} \\ &- \left(D_{(i} \phi_{j)} \right)_{\lambda} \bar{\psi}^{i} \psi^{j} - \frac{1}{2} \phi^{i}_{\lambda} \phi_{\lambda,i} - \frac{1}{2} [\phi_{i}, \phi_{j}]_{\lambda} \bar{\psi}^{i} \psi^{j} + \zeta \left(\bar{\lambda}^{\alpha} \lambda_{\alpha} - n \right) \,. \end{aligned}$$

Variations

$$\begin{split} \delta x^{i} &= \epsilon \bar{\psi}^{i} - \bar{\epsilon} \psi^{i} \,, \\ \delta \psi^{i} &= i \epsilon \dot{x}^{i} + \epsilon \phi^{i}_{\lambda} - \epsilon \Gamma^{i}_{jk} \bar{\psi}^{j} \psi^{k} \,, \\ \delta \lambda^{\alpha} &= -i \epsilon c^{\alpha}_{\ \beta \gamma} \bar{\psi}^{i} \varphi^{\beta}_{i} \lambda^{\gamma} - i \bar{\epsilon} c^{\alpha}_{\ \beta \gamma} \psi^{i} \bar{\varphi}^{\beta}_{i} \lambda^{\gamma} \,. \end{split}$$