Higher Symmetries via Cutting and Gluing of Orbifolds

Max Hübner

2203.10102 with Mirjam Cvetič, Jonathan J. Heckman, Ethan Torres 2209.03343 with Jonathan J. Heckman, Ethan Torres, Hao Zhang Work in progress with Mirjam Cvetič, Jonathan J. Heckman, Ethan Torres

Simons Collaboration, Sixth Annual Meeting September 9th, 2022

Motivation

- Consider IIA/IIB/M/F-theory on geometry $\mathbb{R}^{1,d-1} imes X$
- Let X be non-compact, singular and of special holonomy
- \Rightarrow supersymmetric quantum field theory \mathcal{T}_X
- What to study about such theories? Symmetries!

[Del Zotto, Heckman, Park, Rudelius, 2015], [Albertini, Del Zotto, García Etxebarria, Hosseini, 2020], [Morrison, Schäfer-Nameki, Willet, 2020], ...

Motivation

• CY cones, elliptically CY-threefolds, *G*₂-manifolds [Cvetič, Heckman, MH, Torres, 2022], [MH, Morrison, Schäfer-Nameki, 2022], [Del Zotto, García Etxebarria, Schäfer-Nameki, 2022], ...

Introduction

Geometric Engineering of Higher Symmetries 2-Group Symmetries via Geometry Examples Summary and Conclusion

Motivation

- Tools: Geometric engineering dictionary
 - \Rightarrow Physics of \mathcal{T}_X is filtered by mathematical structure of X
- Metric data, very important, but hard [Joyce, 1996], [Atiyah, Witten, 2001], [Acharya, Witten, 2001], [Acharya, 2000], [Kovalev, 2003], [Corti, Haskins, Nordström, Pacini, 2015], ...

Motivation

 Topological data, still very important, but easy [Cvetič, Heckman, MH, Torres, 2022], [Del Zotto, García Etxebarria, Schäfer-Nameki, 2022], [MH, Morrison, Schäfer-Nameki, Wang, 2022]

Punchline: [Gaiotto, Kapustin, Seiberg, Willett, 2014]

Symmetries are generated by topological operators!

• Objective: study symmetries of \mathcal{T}_X via the topology of X

Motivation

- Let X be **compact**, singular and of special holonomy
- \Rightarrow supergravity theory S_X
- What can we say about such theories? [Apruzzi, Dierigl, Lin, 2020], [Cvetič, Dierigl, Lin, Zhang, 2020], [Heidenreich, McNamara, Montero, Reece, Rudelius 2021], . . .

Motivation

Introduction

Motivation

Geometric Engineering of Higher Symmetries 2-Group Symmetries via Geometry Examples Summary and Conclusion

Motivation

- What about S?
- Localized Sectors: $S \supset \mathcal{T}_1 \otimes \mathcal{T}_2 \otimes \mathcal{T}_3 \otimes \dots$
- Local limits: $S \twoheadrightarrow \mathcal{T}_k$ [Beasley, Heckman, Vafa, 2008], [Pantev, Wijnholt, 2009], ...
- Symmetries emerge in local limits
- Alternatively: embeddings $\mathcal{T}_k \hookrightarrow \mathcal{S}$
- Symmetries are broken or gauged

[Banks, Seiberg, 2011], [Apruzzi, Dierigl, Lin, 2020], [Braun, Larfors, Öhlman, 2021], ...

Punchline: Topology determines emergence/gauging/breaking

 \Rightarrow Come to my talk at the workshop next week!

Introduction

Motivation

Geometric Engineering of Higher Symmetries 2-Group Symmetries via Geometry Examples Summary and Conclusion

2 Geometric Engineering of Higher Symmetries

3 2-Group Symmetries via Geometry

4 Examples

Defects Symmetry Operators Generalizations and Comments and Summary

Defects of \mathcal{T}_X

- Consider M-theory on non-compact X
- Wrap M2 or M5 branes on non-compact cycles [Albertini, Del Zotto, García Etxebarria, Hosseini, 2020], [Morrison, Schäfer-Nameki, Willet, 2020]

$$rac{H_{k+1}(X,\partial X)}{H_{k+1}(X)}\cong H_k(\partial X)|_{ ext{triv}}$$

constructing defects $\mathfrak{D}^{M2}_{2-k}(\gamma_k)$ or $\mathfrak{D}^{M5}_{5-k}(\sigma_k)$

- Defects are non-dynamical (2 k) or (5 k) dimensional electric or magnetic objects in T of infinite mass/tension
- $\bullet~$ Collect all defects into the defect group $\mathfrak D$ [Del Zotto, Heckman, Park, Rudelius, 2015],

$$\mathfrak{D} = \bigoplus_{m} \mathfrak{D}^{(m)}$$
 with $\mathfrak{D}^{(m)} = \bigoplus_{p-k=m} \frac{H_{k+1}(X, \partial X)}{H_{k+1}(X)}$

• Group operation is fusion of defects

Properties of Defects

- The theory \mathcal{T}_X implicitly assumes a selection of defects
- Phase ambiguity in correlation functions [Seiberg, Taylor, 2011]

with $\alpha = \langle \mathfrak{D}_p^{\rm M2}, \mathfrak{D}_{D-p-2}^{\rm M5} \rangle \in \mathbb{Q}/\mathbb{Z}$

- $\bullet\,$ Phase α given by the linking of cycles wrapped by the M2, M5
- Polarizations $\Lambda^{\vee} \subset \mathfrak{D}$ determine absolute theories [Gaiotto, Moore, Neitzke, 2010], [Aharony, Seiberg, Tachikawa, 2013], [Gukov, Hsin, Pei, 2020]

Defects Symmetry Operators Generalizations and Comments and Summary

Symmetry Operators

• Wrap M2 or M5 branes on cycles at infinity, [Heckman, MH, Torres, Zhang, yesterday]

$$\gamma_{\ell}, \sigma_{\ell} \in H_{\ell}(\partial X)$$

constructing symmetry operators $\mathcal{U}_{3-\ell}^{M2}(\gamma_{\ell})$ or $\mathcal{U}_{6-\ell}^{M5}(\sigma_{\ell})$.

• Symmetry operators are complicated [Freed, Moore, Segal, 2006], [García Etxebarria, Heidenreich, Regalado, 2019]

$$\mathcal{U}_{3-\ell}^{M2}(\gamma_{\ell}) = \exp(\mathcal{S}_{top}^{M2}) = \exp\left(2\pi i \int_{\Sigma_{3-\ell} \times \gamma_{\ell}} \check{G}_{4} + \ldots\right)$$
$$\mathcal{U}_{6-\ell}^{M5}(\sigma_{\ell}) = \exp(\mathcal{S}_{top}^{M5}) = \exp\left(2\pi i \int_{\Sigma_{6-\ell} \times \gamma_{\ell}} \check{G}_{7} + \ldots\right)$$

Defects Symmetry Operators Generalizations and Comments and Summary

Excursion

• For example, for D3 branes we have $\mathcal{U} = \exp(\mathcal{S}_{top}^{D3})$ with [Minasian, Moore, 1997]

$$\mathcal{S}_{\mathsf{top}}^{D3} = 2\pi i \int\limits_{\Sigma} \exp(\mathcal{F}_2) \sqrt{\frac{\widehat{A}(\mathcal{T}\Sigma)}{\widehat{A}(\mathcal{N}\Sigma)}} \left(\mathcal{C}_0 + \mathcal{C}_2 + \mathcal{C}_4\right)$$

Defects Symmetry Operators Generalizations and Comments and Summary

Action of Symmetry Operators

- Phase ambiguity ↔ flux operators do not commute [Seiberg, Taylor, 2011], [García Etxebarria, Heidenreich, Regalado, 2019]
- Flux operator action on defects is determined by linking Link $(\gamma_{\ell}, \sigma_k)$ [García

Etxebarria, 2022], [Heckman, MH, Torres, Zhang, 2022]

• Pontryagin dual group Λ of *n*-form symmetries

• For figure
$$n = 3 - k - 1$$

Defects Symmetry Operators Generalizations and Comments and Summary

Action of Symmetry Operators

• *n*-form symmetries: $U_p : \mathfrak{D}_n \to \mathfrak{D}_n$

[Gaiotto, Kapustin, Seiberg, Willett, 2014], [Sharpe, 2015]

- In space-time dimension D = p + n + 1
- \mathcal{U}_p can act on defects $\mathfrak{D}_{n'}$ with $n' \ge n$ [Hsin, Lam, Seiberg 2018], [Benini, Cordova, Hsin 2018], ...

Defects Symmetry Operators Generalizations and Comments and Summary

Generalizations, Comments and Summary

- Brane perspective gives fusion rules of symmetry operators
- Generalizations to non-invertible symmetries naturally covered
- Prediction: further generalizations of 'Symmetry'
- Consequence: symmetries trivialize in compact models

Higher symmetry data:

- { Topological defect operators U }
- + Representations (Defects \mathfrak{D})
- + Fusion algebra

Line Defects \widetilde{A}^{\vee} Local Defects Z_G^{\vee} 2-Groups Properties of 2-Groups

2-Group Symmetries via Geometry

Line Defects \widetilde{A}^{\vee} Local Defects Z_G^{\vee} 2-Groups Properties of 2-Groups

2-Group Symmetries via Geometry

• *n*-form symmetries can mix

[Benini, Cordova, Hsin 2018], [Cordova, Dumitrescu, Intriligator 2018], ...

• 2-group symmetry: mixing of 0-form and 1-form symmetries

[Apruzzi, Bhardwaj, Gould, Schäfer-Nameki, 2021], [Apruzzi, Bhardwaj, Schäfer-Nameki, Oh, 2021], [Cvetič, Heckman, MH, Torres, 2022], [Del Zotto, García Etxebarria, Schäfer-Nameki, 2022]

• Concrete geometric context we consider:

 $\widetilde{G} = \widetilde{G}_1 \times \widetilde{G}_2 \times \widetilde{G}_3 \times \dots$

 \widetilde{G}_i simply connected with algebra \mathfrak{g}_i

- ADE singularities in the boundary ∂X
- Naive 0-form center symmetry Z_{G̃}

Line Defects \widetilde{A}^{\vee} Local Defects Z_{G}^{\vee} 2-Groups Properties of 2-Groups

Line Defects \widetilde{A}^{\vee}

- ∂X is singular!
- Singular locus K, tube ∂X^{loc} , $\partial X^{\circ} = \partial X \setminus K$
- Generalize to orbifold homology: $H_*
 ightarrow H_*^{
 m orb}$ [Moerdijk, Pronk, 2003]
- \Rightarrow new homology classes
- Wrap M2 branes on $\gamma_1 \in H_1(\partial X)$, generate defects \mathcal{A}^{\vee}
- Wrap M2 branes on $\widetilde{\gamma}_1 \in H_1^{\mathsf{orb}}(\partial X)$, generate defects $\widetilde{\mathcal{A}}^{\vee}$
- $\bullet \ \Rightarrow \text{ projection of lines } \widetilde{\mathcal{A}}^{\vee} \to \mathcal{A}^{\vee}$
- Physics: *Ã*[∨] are line operators modulo local operator interfaces with faithful action under flavor symmetry group *G* [Lee, Ohmori, Tachikawa, 2021]

Line Defects \widetilde{A}^{\vee} Local Defects Z_{G}^{\vee} 2-Groups Properties of 2-Groups

Local Defects Z_G^{\vee}

- Observation: $H_1^{
 m orb}(\partial X) = H_1(\partial X^\circ)$ [Moerdijk, Pronk, 2003]
- Interpretation:

• Wrap M2 brane on $\text{Disk} \times \mathbb{R}_+ \to \text{Local operators in } Z^{\vee}_{\widetilde{G}}$

Line Defects \overline{A}^{\vee} Local Defects Z_{G}^{\vee} **2-Groups** Properties of 2-Groups

2-Groups

2-group of defects:

$$0 \rightarrow Z_G^{\vee} \rightarrow Z_{\widetilde{G}}^{\vee} \rightarrow \widetilde{\mathcal{A}}^{\vee} \rightarrow \mathcal{A}^{\vee} \rightarrow 0$$

• Geometrifies to (Mayer-Vietoris sequence, cover $\partial X^{\text{loc}} \cup \partial X^{\circ}$) [Cvetič, Heckman, MH, Torres, 2022]

$$0 \rightarrow \ker \iota_1 \rightarrow H_1(\partial(\partial X^\circ)) \xrightarrow{\iota_1} H_1(\partial X^\circ) \rightarrow H_1(\partial X) \rightarrow 0$$

• 2-group of symmetry operators (Pontryagin dual):

[Kapustin, Thorngren, 2013], [Lee, Ohmori, Tachikawa, 2021]

$$0 \ \rightarrow \ \mathcal{A} \ \rightarrow \ \widetilde{\mathcal{A}} \ \rightarrow \ Z_{\widetilde{G}} \ \rightarrow \ Z_{G} \ \rightarrow \ 0$$

Line Defects \widetilde{A}^{\vee} Local Defects Z_G^{\vee} 2-Groups Properties of 2-Groups

Properties of 2-Groups $(\mathcal{A}, \mathcal{G}, \mathcal{P}, \rho)$

- Contain 1-form symmetry group ${\cal A}$
- Contain 0-form symmetry (center) group Z_G
- Isomorphism class data: Postinkov class $P \in H^3(BG, \mathcal{A})$
- Here, no action $ho: \mathcal{G}
 ightarrow \mathsf{Aut}(\mathcal{A})$
- Can be gauged/have anomalies
- Constrain RG flow, IR physics, vacuum structure
- Selection rules

Example: \mathbb{C}^3/Γ , $\Gamma = \mathbb{Z}_n$ Supersymmetric D6 branes: SQCD-like theories

Example: \mathbb{C}^3/Γ , $\Gamma = \mathbb{Z}_n$

• Geometry: $(z_1, z_2, z_3) \sim (\omega^{k_1} z_1, \omega^{k_2} z_2, \omega^{k_3} z_3)$ with primitive $\omega^n = 1$ and $k_1 + k_2 + k_3 = 0 \mod n$

[Joyce, 2000], [Tian, Wang, 2021], [Del Zotto, Heckman, Meynet, Moscrop, Zhang, 2022]

- Boundary: $S^5/\Gamma = \{|z_1|^2 + |z_2|^2 + |z_3|^2 = 1\}/\Gamma$
- A-type ADE singularities: circle $|z_i| = 1$ rank $gcd(n, k_i)$
- Toric model for ∂X with T^3 fiber and triangle base

Example: \mathbb{C}^3/Γ , $\Gamma = \mathbb{Z}_n$ Supersymmetric D6 branes: SQCD-like theories

Example: \mathbb{C}^3/Γ , $\Gamma = \mathbb{Z}_{2k}$

- Concrete $(k_1, k_2, k_3) = (1, 1, 2k 2)$
- A_1 singularity along $z_1 = z_2 = 0$
- A_1 singularity in boundary $|z_3| = 1$
- Deformation retraction $\partial X^{\circ} \to S^3/\mathbb{Z}_{2k}$, $H_1(\partial X^{\circ}) \cong \mathbb{Z}_{2k}$
- Armstrong $H_1(\partial X) \cong \mathbb{Z}_2$

• $\Rightarrow G = SU(2)/\mathbb{Z}_2 = SO(3)$

Example: \mathbb{C}^3/Γ , $\Gamma = \mathbb{Z}_n$ Supersymmetric D6 branes: SQCD-like theories

Generalizations and Comments

- We study all 5d SCFTs engineered by M-theory on \mathbb{C}^3/Γ with $\Gamma \subset SU(3)$ and $\Gamma \cong \mathbb{Z}_n \times \mathbb{Z}_m$ with $m \mid n$
- For example, 5d T_N theory [Benini, Benvenuti, Tachikawa, 2009] $\Gamma \cong \mathbb{Z}_N \times \mathbb{Z}_N$

$$G = rac{SU(N) imes SU(N) imes SU(N)}{\mathbb{Z}_N imes \mathbb{Z}_N} \quad ext{and} \quad \mathcal{A} = 0$$

- Match charge lattice analysis [Apruzzi, Bhardwaj, Schäfer-Nameki, Oh, 2021] and Lagrangian analysis when gauge theory phases exist
- Consistent with compactifications (eg. 4d T_N theory) [Gaiotto, Maldacena, 2012], [Bhardwaj, 2021]
- Intrinsically non-Lagrangian characterization
- Minimalistic characterization

Example: \mathbb{C}^3/Γ , $\Gamma = \mathbb{Z}_n$ Supersymmetric D6 branes: SQCD-like theories

Supersymmetric D6 branes: SQCD-like theories

- Hard: metric uplift of susy D6-brane configurations [Foscolo, Haskins, Nordstöm, 2017], [Acharya, Foscolo, Najjar, Svanes, 2020]
- Easy: topological uplift of susy D6-brane configurations
- D6 brane in IIA is co-dimension 3 with uplift as

Example: \mathbb{C}^3/Γ , $\Gamma = \mathbb{Z}_n$ Supersymmetric D6 branes: SQCD-like theories

Uplifting Procedure

IIA Configuration:

- CY₃ X_6 with N_i D6 branes wrapped on sLag submanifold M_i
- D6-branes source RR flux $F_2 = dC_1$ counting branes $\int_{S^2} F_2 = n_{D6}$
- Expand F₂ in fluxes through cycles linking D6 loci

M-theory lift:

- Local geometry normal to N_i D6 branes lifts to $\mathbb{C}^2/\mathbb{Z}_{N_i}$
- $X_6^\circ = X_6 \setminus \cup_i M_i$ lifts to a circle bundle $X_7^\circ \to X_6^\circ$ with Euler class e = F
- IIA set-up lifts to a circle bundle $X_7 \rightarrow X_6$ with A_{N_i-1} loci

Example: \mathbb{C}^3/Γ , $\Gamma = \mathbb{Z}_n$ Supersymmetric D6 branes: SQCD-like theories

Uplifting Procedure

Restrict constructions to the smooth boundary ∂X_7° , Gysin sequence:

$$\cdots \to H^k(X_7^\circ) \to H^{k-1}(X_6^\circ) \xrightarrow{e \wedge} H^{k+1}(X_6^\circ) \to H^{k+1}(X_7^\circ) \to \dots$$

Glue local neighborhoods X_7^{loc} back in, Mayer-Vietoris sequence:

$$\cdots \rightarrow H_k(\partial X_7^\circ) \rightarrow H_k(X_7^{\text{loc}}) \oplus H_k(X_7^\circ) \rightarrow H_k(X_7) \rightarrow \ldots$$

Possible extensions: Orientifold planes

Example

- CY₃ [Feng, He, Kennaway, Vafa, 2008], [Del Zotto, Oh, Zhou, 2021] with supersymmetric three-spheres
- Consider local geometry $X_6 = T^*S^3$ of a fixed (color) three-sphere
- Color S^3 intersects flavor S^3 's at points

• Flavor S^3 's decompactify to fiber classes topologically $\mathbb{R}^3 \subset \mathcal{T}^*S^3$

• Flavor symmetry $G_F = [SU(N_f) \times SU(N_f)]/Z$ with center $\mathbb{Z}_{gcd(N_f,N_c)}$

Summary and Conclusion

- Added higher symmetry structures to the geometric engineering dictionary
 - Geometrized classes of defects, $\mathcal{A}^{\lor}, \widetilde{\mathcal{A}}^{\lor}, Z_{\widetilde{G}}^{\lor}, Z_{\mathcal{G}}^{\lor}$
 - Geometrized extension properties (2-group = Mayer-Vietoris)
 - Geometrized symmetry operators as branes at infinity

all via the boundary geometries $\partial X, \partial X^{\circ}, \partial X^{\text{loc}}$.

- Non-Lagrangian methods, applicable to strongly coupled SQFTs
- Many avenues for furture research
 - Boundaries of boundaries of boundaries $\ldots \rightarrow n$ -groups
 - Symmetries and compact geometries