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Motivation
Consider IIA/IIB/M/F-theory on geometry R1,d−1 × X

Let X be non-compact, singular and of special holonomy

⇒ supersymmetric quantum field theory TX

What to study about such theories? Symmetries!

[Del Zotto, Heckman, Park, Rudelius, 2015], [Albertini, Del Zotto, Garćıa Etxebarria, Hosseini, 2020],
[Morrison, Schäfer-Nameki, Willet, 2020], ...

Non-Compact X

Boundary ∂XSQFT T

CY cones, elliptically CY-threefolds, G2-manifolds [Cvetič, Heckman, MH, Torres,

2022], [MH, Morrison, Schäfer-Nameki, 2022], [Del Zotto, Garćıa Etxebarria, Schäfer-Nameki, 2022], ...
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Tools: Geometric engineering dictionary

⇒ Physics of TX is filtered by mathematical structure of X

Metric data, very important, but hard [Joyce, 1996], [Atiyah, Witten, 2001], [Acharya,

Witten, 2001], [Acharya, 2000], [Kovalev, 2003], [Corti, Haskins, Nordström, Pacini, 2015], ...

Topological data, still very important, but easy [Cvetič, Heckman, MH, Torres, 2022],
[Del Zotto, Garćıa Etxebarria, Schäfer-Nameki, 2022], [MH, Morrison, Schäfer-Nameki, Wang, 2022]

Punchline: [Gaiotto, Kapustin, Seiberg, Willett, 2014]

Symmetries are generated by topological operators!

Objective: study symmetries of TX via the topology of X
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Let X be compact, singular and of special holonomy

⇒ supergravity theory SX

What can we say about such theories? [Apruzzi, Dierigl, Lin, 2020], [Cvetič, Dierigl, Lin,

Zhang, 2020], [Heidenreich, McNamara, Montero, Reece, Rudelius 2021], . . .

Compact X

High Codimension Low Codimension
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What about S?
Localized Sectors: S ⊃ T1 ⊗ T2 ⊗ T3 ⊗ . . .

Local limits: S ↠ Tk [Beasley, Heckman, Vafa, 2008], [Pantev, Wijnholt, 2009], ...

Symmetries emerge in local limits

Alternatively: embeddings Tk ↪→ S
Symmetries are broken or gauged

[Banks, Seiberg, 2011], [Apruzzi, Dierigl, Lin, 2020], [Braun, Larfors, Öhlman, 2021], ...

Punchline: Topology determines emergence/gauging/breaking

⇒ Come to my talk at the workshop next week!
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Defects of TX
Consider M-theory on non-compact X

Wrap M2 or M5 branes on non-compact cycles [Albertini, Del Zotto, Garćıa

Etxebarria, Hosseini, 2020], [Morrison, Schäfer-Nameki, Willet, 2020]

Hk+1(X , ∂X )

Hk+1(X )
∼= Hk(∂X )|triv

constructing defects DM2
2−k(γk) or D

M5
5−k(σk)

Defects are non-dynamical (2− k) or (5− k) dimensional

electric or magnetic objects in T of infinite mass/tension

Collect all defects into the defect group D [Del Zotto, Heckman, Park, Rudelius, 2015],

D =
⊕
m

D(m) with D(m) =
⊕

p−k=m

Hk+1(X , ∂X )

Hk+1(X )

Group operation is fusion of defects
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Properties of Defects

The theory TX implicitly assumes a selection of defects

Phase ambiguity in correlation functions [Seiberg, Taylor, 2011]

DM2
p

DM5
D−p−2

DM2
p

DM5
D−p−2

= exp(2πiα)

with α = ⟨DM2
p ,DM5

D−p−2⟩ ∈ Q/Z
Phase α given by the linking of cycles wrapped by the M2, M5

Polarizations Λ∨ ⊂ D determine absolute theories [Gaiotto, Moore, Neitzke,

2010], [Aharony, Seiberg, Tachikawa, 2013], [Gukov, Hsin, Pei, 2020]
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Symmetry Operators

Wrap M2 or M5 branes on cycles at infinity, [Heckman, MH, Torres, Zhang, yesterday]

γℓ, σℓ ∈ Hℓ(∂X )

constructing symmetry operators UM2
3−ℓ(γℓ) or UM5

6−ℓ(σℓ).

Symmetry operators are complicated [Freed, Moore, Segal, 2006], [Garćıa Etxebarria,

Heidenreich, Regalado, 2019]

UM2
3−ℓ(γℓ) = exp(SM2

top ) = exp

(
2πi

∫
Σ3−ℓ×γℓ

Ğ4 + . . .

)

UM5
6−ℓ(σℓ) = exp(SM5

top ) = exp

(
2πi

∫
Σ6−ℓ×γℓ

Ğ7 + . . .

)
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Excursion

For example, for D3 branes we have U = exp(SD3
top) with [Minasian, Moore, 1997]

SD3
top = 2πi

∫
Σ

exp(F2)

√
Â(TΣ)

Â(NΣ)
(C0 + C2 + C4)
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Action of Symmetry Operators

Phase ambiguity ↔ flux operators do not commute [Seiberg, Taylor, 2011], [Garćıa

Etxebarria, Heidenreich, Regalado, 2019]

Flux operator action on defects is determined by linking Link(γℓ, σk) [Garćıa

Etxebarria, 2022], [Heckman, MH, Torres, Zhang, 2022]

X

∂X

Defect

Symmetry

γℓ

σk

SQFT

×UM5
6−ℓ

DM2
3−k−1

Operator

Space-time

Pontryagin dual group Λ of n -form symmetries

For figure n = 3− k − 1
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Action of Symmetry Operators

n -form symmetries: Up : Dn → Dn

[Gaiotto, Kapustin, Seiberg, Willett, 2014], [Sharpe, 2015]

In space-time dimension D = p + n + 1

Up can act on defects Dn′ with n′ ≥ n

[Hsin, Lam, Seiberg 2018], [Benini, Cordova, Hsin 2018], ...

Example: UD−1 can act on lines

UD−1

D1Dρ
1
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Generalizations, Comments and Summary

Brane perspective gives fusion rules of symmetry operators

Generalizations to non-invertible symmetries naturally covered

Prediction: further generalizations of ‘Symmetry’

Consequence: symmetries trivialize in compact models

Higher symmetry data:

{ Topological defect operators U }
+ Representations (Defects D)

+ Fusion algebra
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n -form symmetries can mix

[Benini, Cordova, Hsin 2018], [Cordova, Dumitrescu, Intriligator 2018], ...

2-group symmetry: mixing of 0-form and 1-form symmetries

[Apruzzi, Bhardwaj, Gould, Schäfer-Nameki, 2021], [Apruzzi, Bhardwaj, Schäfer-Nameki, Oh, 2021],
[Cvetič, Heckman, MH, Torres, 2022], [Del Zotto, Garćıa Etxebarria, Schäfer-Nameki, 2022]

Concrete geometric context we consider:

∂X

g1

g2

g3

X G̃ = G̃1 × G̃2 × G̃3 × . . .

G̃i simply connected with algebra gi

ADE singularities in the boundary ∂X

Naive 0-form center symmetry ZG̃
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Local Defects Z∨
G

2-Groups
Properties of 2-Groups

Line Defects Ã∨

∂X is singular!

Singular locus K , tube ∂X loc, ∂X ◦ = ∂X \ K
Generalize to orbifold homology: H∗ → Horb

∗ [Moerdijk, Pronk, 2003]

⇒ new homology classes

Wrap M2 branes on γ1 ∈ H1(∂X ), generate defects A∨

Wrap M2 branes on γ̃1 ∈ Horb
1 (∂X ), generate defects Ã∨

⇒ projection of lines Ã∨ → A∨

Physics: Ã∨ are line operators modulo local operator interfaces with
faithful action under flavor symmetry group G [Lee, Ohmori, Tachikawa, 2021]
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Local Defects Z∨
G

Observation: Horb
1 (∂X ) = H1(∂X

◦) [Moerdijk, Pronk, 2003]

Interpretation:

X

∂X

SQFT×∈ Z∨
G

Space-time

Wrap M2 brane on Disk×R+ → Local operators in Z∨
G̃
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2-Groups

2-group of defects:

0 → Z∨
G → Z∨

G̃
→ Ã∨ → A∨ → 0

Geometrifies to (Mayer-Vietoris sequence, cover ∂X loc ∪ ∂X ◦)

[Cvetič, Heckman, MH, Torres, 2022]

0 → ker ι1 → H1(∂(∂X
◦))

ι1−−→ H1(∂X
◦) → H1(∂X ) → 0

2-group of symmetry operators (Pontryagin dual):

[Kapustin, Thorngren, 2013], [Lee, Ohmori, Tachikawa, 2021]

0 → A → Ã → ZG̃ → ZG → 0
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Local Defects Z∨
G

2-Groups
Properties of 2-Groups

Properties of 2-Groups (A,G ,P , ρ)

Contain 1-form symmetry group A
Contain 0-form symmetry (center) group ZG

Isomorphism class data: Postinkov class P ∈ H3(BG ,A)

Here, no action ρ : G → Aut(A)

Can be gauged/have anomalies

Constrain RG flow, IR physics, vacuum structure

Selection rules
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Example: C3/Γ , Γ = Zn

Geometry: (z1, z2, z3) ∼ (ωk1z1, ω
k2z2, ω

k3z3)

with primitive ωn = 1 and k1 + k2 + k3 = 0 mod n

[Joyce, 2000], [Tian, Wang, 2021], [Del Zotto, Heckman, Meynet, Moscrop, Zhang, 2022]

Boundary: S5/Γ = {|z1|2 + |z2|2 + |z3|2 = 1}/Γ
A-type ADE singularities: circle |zi | = 1 rank gcd(n, ki )

Toric model for ∂X with T 3 fiber and triangle base

p3

p1

p2

P2

P3

P1

E12

E23

E31
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Example: C3/Γ , Γ = Z2k

Concrete (k1, k2, k3) = (1, 1, 2k − 2)

A1 singularity along z1 = z2 = 0

A1 singularity in boundary |z3| = 1

Deformation retraction ∂X ◦ → S3/Z2k , H1(∂X
◦) ∼= Z2k

Armstrong H1(∂X ) ∼= Z2

0 → A → Ã → ZG̃ → ZG → 0

0 → Z2 → Z2k → Zk → 0 → 0

⇒ G = SU(2)/Z2 = SO(3)

Max Hübner Higher Symmetries via Cutting and Gluing of Orbifolds
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Supersymmetric D6 branes: SQCD-like theories

Generalizations and Comments

We study all 5d SCFTs engineered by M-theory on

C3/Γ with Γ ⊂ SU(3) and Γ ∼= Zn × Zm with m | n
For example, 5d TN theory [Benini, Benvenuti, Tachikawa, 2009] Γ ∼= ZN × ZN

G =
SU(N)× SU(N)× SU(N)

ZN × ZN
and A = 0

Match charge lattice analysis [Apruzzi, Bhardwaj, Schäfer-Nameki, Oh, 2021] and
Lagrangian analysis when gauge theory phases exist

Consistent with compactifications (eg. 4d TN theory) [Gaiotto, Maldacena, 2012],
[Bhardwaj, 2021]

Intrinsically non-Lagrangian characterization

Minimalistic characterization
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Supersymmetric D6 branes: SQCD-like theories

Hard: metric uplift of susy D6-brane configurations

[Foscolo, Haskins, Nordstöm, 2017], [Acharya, Foscolo, Najjar, Svanes, 2020]

Easy: topological uplift of susy D6-brane configurations

D6 brane in IIA is co-dimension 3 with uplift as

R3

N × D6

S2

M-theory Uplift

×S1

KK Monopole S3/ZN

AN−1

Max Hübner Higher Symmetries via Cutting and Gluing of Orbifolds
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Example: C3/Γ , Γ = Zn
Supersymmetric D6 branes: SQCD-like theories

Uplifting Procedure

IIA Configuration:

CY3 X6 with Ni D6 branes wrapped on sLag submanifold Mi

D6-branes source RR flux F2 = dC1 counting branes
∫
S2 F2 = nD6

Expand F2 in fluxes through cycles linking D6 loci

M-theory lift:

Local geometry normal to Ni D6 branes lifts to C2/ZNi

X ◦
6 = X6 \ ∪iMi lifts to a circle bundle X ◦

7 → X ◦
6 with Euler class e = F

IIA set-up lifts to a circle bundle X7 → X6 with ANi−1 loci

Max Hübner Higher Symmetries via Cutting and Gluing of Orbifolds
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Example: C3/Γ , Γ = Zn
Supersymmetric D6 branes: SQCD-like theories

Uplifting Procedure

Restrict constructions to the smooth boundary ∂X ◦
7 , Gysin sequence:

· · · → Hk(X ◦
7 ) → Hk−1(X ◦

6 )
e∧−→ Hk+1(X ◦

6 ) → Hk+1(X ◦
7 ) → . . .

Glue local neighborhoods X loc
7 back in, Mayer-Vietoris sequence:

· · · → Hk(∂X
◦
7 ) → Hk(X

loc
7 )⊕ Hk(X

◦
7 ) −→ Hk(X7) → . . .

Possible extensions: Orientifold planes

Max Hübner Higher Symmetries via Cutting and Gluing of Orbifolds
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Example

CY3 [Feng, He, Kennaway, Vafa, 2008], [Del Zotto, Oh, Zhou, 2021] with supersymmetric
three-spheres

Consider local geometry X6 = T ∗S3 of a fixed (color) three-sphere

Color S3 intersects flavor S3’s at points

Flavor S3’s decompactify to fiber classes topologically R3 ⊂ T ∗S3

S3 S3 S3

Nc color

Nf flavorNf flavor

Local Model

Nf Nc Nf

Flavor symmetry GF = [SU(Nf )× SU(Nf )]/Z with center Zgcd(Nf ,Nc )

Max Hübner Higher Symmetries via Cutting and Gluing of Orbifolds
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Summary and Conclusion

Added higher symmetry structures to the geometric engineering dictionary

Geometrized classes of defects, A∨, Ã∨,Z∨
G̃
,Z∨

G

Geometrized extension properties (2-group = Mayer-Vietoris)

Geometrized symmetry operators as branes at infinity

all via the boundary geometries ∂X , ∂X ◦, ∂X loc.

Non-Lagrangian methods, applicable to strongly coupled SQFTs

Many avenues for furture research

Boundaries of boundaries of boundaries . . .→ n -groups

Symmetries and compact geometries

Max Hübner Higher Symmetries via Cutting and Gluing of Orbifolds
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