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Elliptic Calabi-Yau Threefolds

Non-compact singular elliptically fibered Calabi-Yau threefolds π : X → B

with section σ : B → X and discriminant locus ∆

5d SQFT engineered by M-theory on X

5d line defects: M2 branes on relative cycles

h(2) = Tor
H2(X , ∂X )

H2(X )
∼= TorH1(∂X )

∣∣
triv.

Step 1: Compute h(2), two contributions

• Cycles of the base B lifted to X via the section σ, h(2,B)

• Cycles with one leg in B fibered by vanishing cycle in E, h(2,F )

Latter contain gauge theory data, we therefore focus on h(2,F )
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Kodaira Thimbles

We take a step back an consider local K3s, model for the geometry normal to ∆

Local K3: X → C with singularity of Kodaira type Φ at z ∈ C

z

C

π

E T

Boundary ∂X → S1 with monodromy M1, we use

0 → coker (M1 − 1) → H1(∂X ) → ker (M0 − 1) → 0

h(2) = TorH2(X , ∂X )/H2(X ) ∼= Tor Coker(M1 − 1) = 〈T〉
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Compact Presentation of Kodaira Thimbles

Resolve Kodaira Singularity X̃ → X , exceptional curves Cαi

Dualize to linear forms via intersection pairing

α : H2(X̃ )→ H2(X̃ )∗ , Cαi 7→ (Cαi , · ) ,

β : H2(X̃ , ∂X )→ H2(X̃ )∗ , T̂ 7→ (T̂, · )

where Im(α) ⊂ Im(β) over Z.

But Im(α) = Im(β) over Q and therefore Kodaira Thimbles admit

compact representatives in H2(X̃ ,Q/Z)
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Example of Kodaira Thimbles

Example of compact representatives for Kodaira Thimbles for singularities of

Kodaira type Φ = In, I
∗
2n−3 (g = su, so)

1 2 n − 1 n

TIn =
1

n

n−1∑
i=1

iCαi

TIn · TIn = 1/n

1 2 2n − 2

2n

2n − 1

2n + 1

TI∗
2n−3

=
1

4
Cα2n+1

+
3

4
Cα2n

+
1

2

n∑
i=1

Cα2i−1

TI∗
2n−3

· TI∗
2n−3

= 1/4, 3/4 (n = odd,even)
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Threefolds

Back to: Non-compact elliptic threefold π : X → B

Connected discriminant ∆ = ∪i∆i with compact and non-compact

components

Asymptotic Boundary ∂B

Non-compact B

SQFT

Resolution X̃ → X , introduces two types of exceptional curves
(in cases considered here)

(1) Co-dimension-one: Normal bundle O(−2)⊕O(0)

(2) Co-dimension-two: Normal bundle O(−1)⊕O(−1)
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Relative Cycles for Threefolds

Now compute h(2) where

h(2) = Tor
H2(X , ∂X )

H2(X )

by taking the quotient by all curves in H2(X ) not in in class (2).

Cycles with one leg in base and fiber are then

{Ti |Kodaira Thimble for compact ∆i}

Now quotient by the matter curves (2), this yields identifications among
Kodaira Thimbles

h(2),F = {Ti |Kodaira Thimble for compact ∆i} / ∼(2)
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Center Divisors

Dual formulation in terms of divisors

Center divisors D are classes in H4(X ,Q) intersecting all curves integrally

and are given by rational linear combinations of Cartan divisors Dαi

Divisors dual to Kodaira thimbles T = qiCαi are rational combinations of

Cartan divisors T̂ = qiDαi where qi ∈ Q/Z, they admit the pairing

〈 · , · 〉 : H4(X ,Q/Z)× H2(X ,Q/Z)→ Q/Z

Constraint of integral intersection with curves of type (2) gives

ĥ(2,F ) =

{
Dn =

∑
i

ni T̂i

∣∣∣∣∣ Dn has integral intersection with
all matter curves (2), ni ∈ Z

}

We have ĥ(2,F )
∼= h(2,F )
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Example: 5d Spin(10) + 2V

Geometry:
so(10)

4 − [sp(2)]

Resolved geometry, Divisors (Hirzebruch F), Curves (e, f , h, xi ):

[H, Morrison, Schäfer-Nameki, Wang, 2022]

F(2)
0

F(1)
2

F(6)
2

F(3)
2

F(4)
4

F4,(5)
4

e e

e

e

e

e

h

e

h
e

f , f

h − x1 − x2, h − x3 − x4
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Label the compact curves as

C1 = e|D2 , C2 = f |D2 , C3 = f |D1 , C4 = f |D6 , C5 = f |D3 , C6 = f |D4 ,

C7 = x1|D5 C8 = x2|D5 , C9 = x3|D5 , C10 = x4|D5 .

The intersection form Mij = Di · Cj is

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

D1 0 1 −2 0 0 0 0 0 0 0
D2 −2 −2 1 1 1 0 0 0 0 0
D3 0 1 0 0 −2 1 0 0 0 0
D4 0 0 0 0 1 −2 1 1 1 1
D5 0 0 0 0 1 0 −1 −1 −1 −1
D6 0 1 0 −2 0 0 0 0 0 0

The center divisors for h2 = Z2 × Z4 are

DZ2 =
1

2
(D1 + D6) , DZ4 =

1

4
(D1 + 2D2 + 2D3 − D4 − D5 + D6)

and here h2,F
∼= Z2.
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(Example Continued)

We can identify the thimble generating h2,F
∼= Z2 directly in the singular

geometry. (m=1).

Elliptic X3 → B, B = OP1 (−4)

Discriminant Locus

P1 : I ∗,sm

F ⊂ OP1 (−4) : Ins4m

(n)s = (non)-split

At Ramification point p
one-cycle B collapses

TorH1(∂X ) ∼= Z4 ⊕ Z2 :
Hopf fiber in S3/Z4 and B

4

so8+2m [
sp2m

]

p

I ns
4m

Z2

F ∼= C

B
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(Example Continued)

E ↪→ ∂X3 → S3/Z4 = ∂OP1 (−4)

TorH1(∂X ) ∼= Z4 ⊕ Z2 : Hopf fiber of the base S3/Z4 and B

Excise singular fibers ∂XF , implies for base

S1 ↪→ S3/Z4 → S2 \ {∗}

Now S2 \ {∗} deformation retracts to a point

Base (S3/Z4) \ S1
H deformation retracts to Hopf fiber (S1

H)′

∂XF deformation retracts to three-manifold E ↪→ M3 → (S1
H)′
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(Example Continued)

The Hopf circle (S1
H)′ links both S1

H and the bulk P1 with monodromies

MI∗m =

(
−1 −m
0 −1

)
, MI4m =

(
1 4m
0 1

)
Retraction of ∂XF to three-manifold M3 → (S1

H)′ with monodromy

M =

(
−1 −5m
0 −1

)
.

We conclude (∂XF → ∂X ◦)

TorH1(∂X ◦) =

{
Z2 ⊕ Z2 ⊕ Z4 , m ∈ 2Z
Z4 ⊕ Z4 , m ∈ 2Z + 1
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(Example Continued)

0 → C → ZG̃F
→ ZGF → 0

0 → C∨ → Ã∨ → A∨ → 0

For odd m we have:

0 → Z2 → Z2 → 0 → 0

0 → Z2 → Z4 ⊕ Z4 → Z2 ⊕ Z4 → 0

For even m we have:

0 → Z2 → Z2 → 0 → 0

0 → Z2 → Z2 ⊕ Z2 ⊕ Z4 → Z2 ⊕ Z4 → 0

The flavor symmetry is G = Sp(2m)/Z2 [Apruzzi, Bhardwaj, Oh, Schafer-Nameki, 2021]

When m odd we have a non-trivial 2-group symmetry.
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D6-brane uplifts

IIA Configuration:

CY3 X6 with Ni D6 branes wrapped on sLag submanifold Mi

D6-branes source RR flux F2 = dC1 counting branes
∫
S2 F2 = nD6

Expand F2 in fluxes through cycles linking D6 loci

M-theory lift [Acharya, Gukov, 2004]:

Local geometry normal to Ni D6 branes lifts to C2/ZNi

X ◦6 = X6 \ ∪iMi lifts a circle bundle X ◦7 → X ◦6 with Euler class e = F

IIA set-up lifts to a circle bundle X7 → X6 with ANi−1 loci

Restrict constructions to the boundary ∂X7

· · · → Hk(∂X ◦7 )→ Hk−1(∂X ◦6 )
e∧−→ Hk+1(∂X ◦6 )→ Hk+1(∂X ◦7 )→ . . . .
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CY3 [Feng, He, Kennaway, Vafa, 2008], [Del Zotto, Oh, Zhou, 2021] with supersymmetric
three-spheres

Consider local geometry X6 = T ∗S3 of a fixed (color) three-sphere

Color S3 intersects flavor S3’s at points

Flavor S3’s decompactify to fiber classes topologically R3 ⊂ T ∗S3

S3 S3 S3

Nc color

Nf flavorNf flavor

Local Model

Nf Nc Nf

We have ∂X6 = S2 × S3 and ∂X ◦6 = S2 × (S3 \ {∗1, ∗2}) ∼ S2
F × S2

B
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(Example Continued)

∂X ◦6 = S2 × (S3 \ {∗1, ∗2}) ∼ S2
F × S2

B

2× Nf flavor D6 branes and Nc color D6 branes

F = Nc PD[S2
f ] + Nf PD[S2

c ]

Non-trivial subsequence of the Gysin sequence:

0→ H1(∂X ◦7 )→ H0(S2
B × S2

F )
e0−−→ H2(S2

B × S2
F )→ H2(∂X ◦7 )→ 0

0→ H3(∂X ◦7 )→ H2(S2
B × S2

F )
e2−−→ H4(S2

B × S2
F )→ H4(∂X ◦7 )→ 0

e0 : Z→ Z2 , k 7→ (kNf , kNc) , e2 : Z2 → Z , (n,m) 7→ nNf + mNc .
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Homology groups:

H∗(∂X7) ∼=
{
Z, 0,Z⊕ Zgcd(Nf ,Nc ), 0,Z⊕ Zgcd(Nf ,Nc ), 0,Z

}
The short exact sequences

0→ C → ZG̃ → ZG → 0 (1)

0→ C∨ → Ã∨ → A∨ → 0, (2)

take the form

0→ Zgcd(Nf ,Nc ) → Zgcd(Nf ,Nc ) × Zgcd(Nf ,Nc ) → Zgcd(Nf ,Nc ) → 0 (3)

0→ Zgcd(Nf ,Nc ) → Zgcd(Nf ,Nc ) → 0→ 0, (4)

Flavor symmetry GF = (SU(Nf )× SU(Nf )) /Z with flavor center
Zgcd(Nf ,Nc )
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Torus Quotients
Example: Kummer Surface

Compact Models: Singular K3 Surfaces

Singular elliptic K3 surface π : X → P1

Singularities of Kodaira type Φi , gi at zi ∈ P1

Consider patches Bi ⊂ P1 centered on zi

Define X loc = ∪i π
−1(Bi ) and X ◦ = X \ X loc

Mayer-Vietoris sequence X = X ◦ ∪ X loc

∂2 : H2(X ) → H1(∂X loc)

Relative cycles/Defects of X loc compactify

Charge lattice enhances [Guralnik, 2001]

Supergravity gauge group [Apruzzi, Dierigl, Lin, 2020],

[Cvetič, Dierigl, Lin, Zhang, 2021]

Gsugra =
U(1)b2(X ) × Gsc

Im ∂2

π−1(z1)
T1 T2

T3

z1 z2

z3

π−1(z2)

π−1(z3)

P1 B3

B2B1
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Torus Quotients
Example: Kummer Surface

Torus Quotients X = T 4/Γ

Isolated singularities with local neighborhood Ui modeled on C2/Zni

Define X loc =
⋃N

i=1 Ui and X ◦ = X \ X loc

Mayer-Vietoris sequence with respect to the covering X = X ◦ ∪ X loc

0 → H2(X◦)⊕
N⊕
i=1

H2(Ui ) → H2(X )
∂2−−→

N⊕
i=1

H1(∂Ui ) → H1(X◦)⊕
N⊕
i=1

H1(Ui ) → H1(X ) → 0

Resolved Geometry X̃ → X , exceptional curve lattice LE, K3 lattice LK3

0 → H2(X◦)⊕ LE → LK3
∂2−−→

N⊕
i=1

H1(∂Ui ) → H1(X◦) → H1(X ) → 0

Image of ∂2 partially determined by a lattice embedding problem

Max Hübner Getting High on Gluing Orbifolds (Part 2)



Introduction
Elliptic Calabi-Yau Threefolds

D6-brane uplifts
Compact Models: Singular K3 Surfaces

Conclusion and Outlook

Elliptic K3 Surfaces
Torus Quotients
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Example: Kummer Surface T 4/Z2

Singular geometry [Spanier, 1956]:

0 → Z6 → Z6 ⊕ Z5
2

∂2−−→

Z16
2 → Z5

2 → 0

Resolved geometry, with the lattice LE
∼= Z16 and LK3

∼= Z22

0 → Z6 ⊕ LE → LK3
∂2−−→

Z16
2 → Z5

2 → 0

Im (∂2) = Z6
2 ⊕ Z5

2 , where Z5
2 = LKummer/LE
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(Example Continued)

Local models and affine geometry:

Z16
2 = ⊕16

i=1H1(∂Ui ) = ⊕16
i=1H1(RP3) ∼= ⊕16

i=1〈Ti 〉

Characterize Z5
2 ⊂ Im ∂2 as (nI = 0, 1) [Barth, Hulek, Peters, Van de Ven, 2004]

compact 2-cycle
∑
I∈Z4

2

nITI ⇔ f : Z4
2 → Z2 , I 7→ nI is affine linear

Supergravity gauge group

Gsugra =

U(1)6 ×

(
×I∈Z4

2

SU(2)I
)

Z5
2

/Z6
2
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Kodaira thimbles T and center divisors for elliptic CY threefolds X

Boundary Topology H1(∂X ), H1(∂X ◦), . . .

↔ 0-form, 1-form, 2-group Symmetries

Cutting and gluing constructions for D6 brane uplifts

based on Gysin sequence

Gluing local models to global models

• Gauged/Broken Higher Symmetries: T 4/Z3,T
6/Z3,T

7/Z3
2, . . .

• Gauged/Broken 2-Group Symmetries: T 6/Z4,T
6/Γ, . . .
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