Getting High on Gluing Orbifolds (Part 2)

Max Hübner

2203.10022 with David R. Morrison, Sakura Schäfer-Nameki and Yi-Nan Wang 2203.10102 with Mirjam Cvetič, Jonathan J. Heckman, Ethan Torres

University of Freiburg
Geometry, Topology and Singular Special Holonomy Spaces June $8^{\text {th }} 2022$

Overview

(1) Introduction
(2) Elliptic Calabi-Yau Threefolds
(3) D6-brane uplifts
(4) Compact Models: Singular K3 Surfaces
(5) Conclusion and Outlook

Elliptic Calabi-Yau Threefolds

- Non-compact singular elliptically fibered Calabi-Yau threefolds π : $X \rightarrow B$ with section $\sigma: B \rightarrow X$ and discriminant locus Δ
- 5d SQFT engineered by M-theory on X
- 5d line defects: M2 branes on relative cycles

$$
\mathfrak{h}_{(2)}=\left.\operatorname{Tor} \frac{H_{2}(X, \partial X)}{H_{2}(X)} \cong \operatorname{Tor} H_{1}(\partial X)\right|_{\text {triv. }}
$$

- Step 1: Compute $\mathfrak{h}_{(2)}$, two contributions
- Cycles of the base B lifted to X via the section $\sigma, \mathfrak{h}_{(2, B)}$
- Cycles with one leg in B fibered by vanishing cycle in $\mathbb{E}, \mathfrak{h}_{(2, F)}$
- Latter contain gauge theory data, we therefore focus on $\mathfrak{h}_{(2, F)}$

Kodaira Thimbles

We take a step back an consider local K3s, model for the geometry normal to Δ

- Local K3: $X \rightarrow \mathbb{C}$ with singularity of Kodaira type Φ at $z \in \mathbb{C}$

- Boundary $\partial X \rightarrow S^{1}$ with monodromy M_{1}, we use

$$
0 \rightarrow \operatorname{coker}\left(M_{1}-1\right) \rightarrow H_{1}(\partial X) \rightarrow \operatorname{ker}\left(M_{0}-1\right) \rightarrow 0
$$

- $\mathfrak{h}_{(2)}=\operatorname{Tor} H_{2}(X, \partial X) / H_{2}(X) \cong \operatorname{Tor} \operatorname{Coker}\left(M_{1}-1\right)=\langle\mathfrak{T}\rangle$

Compact Presentation of Kodaira Thimbles

- Resolve Kodaira Singularity $\tilde{X} \rightarrow X$, exceptional curves $C_{\alpha_{i}}$
- Dualize to linear forms via intersection pairing

$$
\begin{array}{lrl}
\alpha: H_{2}(\widetilde{X}) \rightarrow H_{2}(\widetilde{X})^{*}, & C_{\alpha_{i}} \mapsto\left(C_{\alpha_{i}}, \cdot\right), \\
\beta: H_{2}(\widetilde{X}, \partial X) \rightarrow H_{2}(\widetilde{X})^{*}, & \widehat{\mathfrak{T}} \mapsto(\widehat{\mathfrak{T}}, \cdot)
\end{array}
$$

where $\operatorname{Im}(\alpha) \subset \operatorname{Im}(\beta)$ over \mathbb{Z}.

- But $\operatorname{Im}(\alpha)=\operatorname{Im}(\beta)$ over \mathbb{Q} and therefore Kodaira Thimbles admit compact representatives in $H_{2}(\widetilde{X}, \mathbb{Q} / \mathbb{Z})$

Example of Kodaira Thimbles

Example of compact representatives for Kodaira Thimbles for singularities of Kodaira type $\Phi=I_{n}, I_{2 n-3}^{*}(\mathfrak{g}=\mathfrak{s u}, \mathfrak{s o})$

$$
\begin{gathered}
\mathfrak{T}_{l_{n}}=\frac{1}{n} \sum_{i=1}^{n-1} i C_{\alpha_{i}} \\
\mathfrak{T}_{I_{n}} \cdot \mathfrak{T}_{I_{n}}=1 / n
\end{gathered}
$$

$$
\mathfrak{T}_{I_{2 n-3}^{*}}=\frac{1}{4} C_{\alpha_{2 n+1}}+\frac{3}{4} C_{\alpha_{2 n}}+\frac{1}{2} \sum_{i=1}^{n} C_{\alpha_{2 i-1}}
$$

$$
\mathfrak{T}_{I_{2 n-3}^{*}} \cdot \mathfrak{T}_{I_{2 n-3}^{*}}=1 / 4,3 / 4 \quad(n=\text { odd, even })
$$

Threefolds

- Back to: Non-compact elliptic threefold $\pi: X \rightarrow B$
- Connected discriminant $\Delta=\cup_{i} \Delta_{i}$ with compact and non-compact components

- Resolution $\widetilde{X} \rightarrow X$, introduces two types of exceptional curves (in cases considered here)
(1) Co-dimension-one: Normal bundle $\mathcal{O}(-2) \oplus \mathcal{O}(0)$
(2) Co-dimension-two: Normal bundle $\mathcal{O}(-1) \oplus \mathcal{O}(-1)$

Relative Cycles for Threefolds

- Now compute $\mathfrak{h}_{(2)}$ where

$$
\mathfrak{h}_{(2)}=\operatorname{Tor} \frac{H_{2}(X, \partial X)}{H_{2}(X)}
$$

by taking the quotient by all curves in $H_{2}(X)$ not in in class (2).

- Cycles with one leg in base and fiber are then

$$
\left\{\mathfrak{T}_{i} \mid \text { Kodaira Thimble for compact } \Delta_{i}\right\}
$$

- Now quotient by the matter curves (2), this yields identifications among Kodaira Thimbles

$$
\mathfrak{h}_{(2), F}=\left\{\mathfrak{T}_{i} \mid \text { Kodaira Thimble for compact } \Delta_{i}\right\} / \sim_{(2)}
$$

Center Divisors

- Dual formulation in terms of divisors
- Center divisors \mathfrak{D} are classes in $H_{4}(X, \mathbb{Q})$ intersecting all curves integrally and are given by rational linear combinations of Cartan divisors $D_{\alpha_{i}}$
- Divisors dual to Kodaira thimbles $\mathfrak{T}=q^{i} C_{\alpha_{i}}$ are rational combinations of Cartan divisors $\widehat{\mathfrak{T}}=q^{i} D_{\alpha_{i}}$ where $q^{i} \in \mathbb{Q} / \mathbb{Z}$, they admit the pairing

$$
\langle\cdot, \cdot\rangle: \quad H_{4}(X, \mathbb{Q} / \mathbb{Z}) \times H_{2}(X, \mathbb{Q} / \mathbb{Z}) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

- Constraint of integral intersection with curves of type (2) gives

$$
\widehat{\mathfrak{h}}_{(2, F)}=\left\{\begin{array}{l|l}
\mathfrak{D}_{n}=\sum_{i} n_{i} \widehat{\mathfrak{T}}_{i} & \begin{array}{l}
\mathfrak{D}_{n} \text { has integral intersection with } \\
\text { all matter curves (2), } n_{i} \in \mathbb{Z}
\end{array}
\end{array}\right\}
$$

- We have $\widehat{\mathfrak{h}}_{(2, F)} \cong \mathfrak{h}_{(2, F)}$

Example: $5 \mathrm{~d} \operatorname{Spin}(10)+2 V$

- Geometry:

$$
4^{\mathfrak{s o}(10)}-[\mathfrak{s p}(2)]
$$

- Resolved geometry, Divisors (Hirzebruch \mathbb{F}), Curves (e, f, h, x_{i}):
[H, Morrison, Schäfer-Nameki, Wang, 2022]

Label the compact curves as

$$
\begin{aligned}
& C_{1}=\left.e\right|_{D_{2}}, \quad C_{2}=\left.f\right|_{\mathfrak{D}_{2}}, C_{3}=\left.f\right|_{D_{1}}, C_{4}=\left.f\right|_{D_{6}}, C_{5}=\left.f\right|_{D_{3}}, C_{6}=\left.f\right|_{D_{4}}, \\
& C_{7}=\left.x_{1}\right|_{D_{5}} C_{8}=\left.x_{2}\right|_{D_{5}}, \quad C_{9}=\left.x_{3}\right|_{D_{5}}, C_{10}=\left.x_{4}\right|_{D_{5}} .
\end{aligned}
$$

The intersection form $\mathcal{M}_{i j}=D_{i} \cdot C_{j}$ is

	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}	C_{10}
D_{1}	0	1	-2	0	0	0	0	0	0	0
D_{2}	-2	-2	1	1	1	0	0	0	0	0
D_{3}	0	1	0	0	-2	1	0	0	0	0
D_{4}	0	0	0	0	1	-2	1	1	1	1
D_{5}	0	0	0	0	1	0	-1	-1	-1	-1
D_{6}	0	1	0	-2	0	0	0	0	0	0

The center divisors for $\mathfrak{h}_{2}=\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ are

$$
\mathfrak{D}_{\mathbb{Z}_{2}}=\frac{1}{2}\left(D_{1}+D_{6}\right), D_{\mathbb{Z}_{4}}=\frac{1}{4}\left(D_{1}+2 D_{2}+2 D_{3}-D_{4}-D_{5}+D_{6}\right)
$$

and here $\mathfrak{h}_{2, F} \cong \mathbb{Z}_{2}$.

(Example Continued)

We can identify the thimble generating $\mathfrak{h}_{2, F} \cong \mathbb{Z}_{2}$ directly in the singular geometry. $(\mathrm{m}=1)$.

- Elliptic $X_{3} \rightarrow B, B=\mathcal{O}_{\mathbb{P}^{1}}(-4)$

$$
\begin{gathered}
\mathfrak{s o}_{8+2 m} \\
4
\end{gathered} \text { - }\left[\mathfrak{s p}_{2 m}\right]
$$

- Discriminant Locus

$$
\begin{aligned}
\mathbb{P}^{1}: & I_{m}^{*, \mathrm{~s}} \\
F \subset \mathcal{O}_{\mathbb{P}^{1}}(-4): & I_{4 m}^{\text {ns }}
\end{aligned}
$$

B

- (n)s $=$ (non)-split
- At Ramification point p one-cycle B collapses
- Tor $H_{1}(\partial X) \cong \mathbb{Z}_{4} \oplus \mathbb{Z}_{2}$: Hopf fiber in S_{3} / \mathbb{Z}_{4} and B

(Example Continued)

$$
\mathbb{E} \hookrightarrow \partial X_{3} \rightarrow S^{3} / \mathbb{Z}_{4}=\partial \mathcal{O}_{\mathbb{P}^{1}}(-4)
$$

- Tor $H_{1}(\partial X) \cong \mathbb{Z}_{4} \oplus \mathbb{Z}_{2}$: Hopf fiber of the base S_{3} / \mathbb{Z}_{4} and B
- Excise singular fibers ∂X_{F}, implies for base

$$
S^{1} \hookrightarrow S^{3} / \mathbb{Z}_{4} \rightarrow S^{2} \backslash\{*\}
$$

- Now $S^{2} \backslash\{*\}$ deformation retracts to a point
- Base $\left(S^{3} / \mathbb{Z}_{4}\right) \backslash S_{H}^{1}$ deformation retracts to Hopf fiber $\left(S_{H}^{1}\right)^{\prime}$
- ∂X_{F} deformation retracts to three-manifold $\mathbb{E} \hookrightarrow M_{3} \rightarrow\left(S_{H}^{1}\right)^{\prime}$

(Example Continued)

- The Hopf circle $\left(S_{H}^{1}\right)^{\prime}$ links both S_{H}^{1} and the bulk \mathbb{P}^{1} with monodromies

$$
M_{l_{m}^{*}}=\left(\begin{array}{cc}
-1 & -m \\
0 & -1
\end{array}\right), \quad M_{I_{4 m}}=\left(\begin{array}{cc}
1 & 4 m \\
0 & 1
\end{array}\right)
$$

- Retraction of ∂X_{F} to three-manifold $M_{3} \rightarrow\left(S_{H}^{1}\right)^{\prime}$ with monodromy

$$
M=\left(\begin{array}{cc}
-1 & -5 m \\
0 & -1
\end{array}\right)
$$

- We conclude $\left(\partial X_{F} \rightarrow \partial X^{\circ}\right)$

$$
\text { Tor } H_{1}\left(\partial X^{\circ}\right)= \begin{cases}\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{4}, & m \in 2 \mathbb{Z} \\ \mathbb{Z}_{4} \oplus \mathbb{Z}_{4}, & m \in 2 \mathbb{Z}+1\end{cases}
$$

(Example Continued)

$$
\begin{aligned}
& 0 \rightarrow \mathcal{C} \rightarrow Z_{\widetilde{G}_{F}} \rightarrow Z_{G_{F}} \rightarrow 0 \\
& 0 \rightarrow \mathcal{C}^{\vee} \rightarrow \widetilde{\mathcal{A}}^{\vee} \rightarrow \mathcal{A}^{\vee} \rightarrow 0
\end{aligned}
$$

For odd m we have:

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \rightarrow 0 \rightarrow 0 \\
& 0 \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \oplus \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \rightarrow 0
\end{aligned}
$$

For even m we have:

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \rightarrow 0 \rightarrow 0 \\
& 0 \rightarrow \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2} \oplus \mathbb{Z}_{4} \rightarrow 0
\end{aligned}
$$

The flavor symmetry is $G=S p(2 m) / \mathbb{Z}_{2}$ [Apruzzi, Bhardwaj, Oh, Schafer-Nameki, 2021] When m odd we have a non-trivial 2-group symmetry.

D6-brane uplifts

IIA Configuration:

- $\mathrm{CY}_{3} X_{6}$ with N_{i} D6 branes wrapped on sLag submanifold M_{i}
- D6-branes source RR flux $F_{2}=d C_{1}$ counting branes $\int_{S^{2}} F_{2}=n_{\text {D6 }}$
- Expand F_{2} in fluxes through cycles linking D6 loci

M-theory lift [Acharya, Gukov, 2004]:

- Local geometry normal to N_{i} D6 branes lifts to $\mathbb{C}^{2} / \mathbb{Z}_{N_{i}}$
- $X_{6}^{\circ}=X_{6} \backslash \cup_{i} M_{i}$ lifts a circle bundle $X_{7}^{\circ} \rightarrow X_{6}^{\circ}$ with Euler class $e=F$
- IIA set-up lifts to a circle bundle $X_{7} \rightarrow X_{6}$ with $A_{N_{i}-1}$ loci

Restrict constructions to the boundary ∂X_{7}

$$
\cdots \rightarrow H^{k}\left(\partial X_{7}^{\circ}\right) \rightarrow H^{k-1}\left(\partial X_{6}^{\circ}\right) \xrightarrow{e \wedge} H^{k+1}\left(\partial X_{6}^{\circ}\right) \rightarrow H^{k+1}\left(\partial X_{7}^{\circ}\right) \rightarrow \ldots
$$

Example

- CY_{3} [Feng, He, Kennaway, Vafa, 2008], [Del Zotto, Oh, Zhou, 2021] with supersymmetric three-spheres
- Consider local geometry $X_{6}=T^{*} S^{3}$ of a fixed (color) three-sphere
- Color S^{3} intersects flavor $S^{3 \prime}$ s at points
- Flavor S^{3} 's decompactify to fiber classes topologically $\mathbb{R}^{3} \subset T^{*} S^{3}$

- We have $\partial X_{6}=S^{2} \times S^{3}$ and $\partial X_{6}^{\circ}=S^{2} \times\left(S^{3} \backslash\left\{*_{1}, *_{2}\right\}\right) \sim S_{F}^{2} \times S_{B}^{2}$

(Example Continued)

- $\partial X_{6}^{\circ}=S^{2} \times\left(S^{3} \backslash\left\{*_{1}, *_{2}\right\}\right) \sim S_{F}^{2} \times S_{B}^{2}$
- $2 \times N_{f}$ flavor D6 branes and N_{c} color D6 branes
- $F=N_{c} \operatorname{PD}\left[S_{f}^{2}\right]+N_{f} \operatorname{PD}\left[S_{c}^{2}\right]$
- Non-trivial subsequence of the Gysin sequence:

$$
\begin{aligned}
& 0 \rightarrow H^{1}\left(\partial X_{7}^{\circ}\right) \rightarrow H^{0}\left(S_{B}^{2} \times S_{F}^{2}\right) \xrightarrow{e_{0}} H^{2}\left(S_{B}^{2} \times S_{F}^{2}\right) \rightarrow H^{2}\left(\partial X_{7}^{\circ}\right) \rightarrow 0 \\
& 0 \rightarrow H^{3}\left(\partial X_{7}^{\circ}\right) \rightarrow H^{2}\left(S_{B}^{2} \times S_{F}^{2}\right) \xrightarrow{e_{2}} H^{4}\left(S_{B}^{2} \times S_{F}^{2}\right) \rightarrow H^{4}\left(\partial X_{7}^{\circ}\right) \rightarrow 0 \\
& e_{0}: \mathbb{Z} \rightarrow \mathbb{Z}^{2}, \quad k \mapsto\left(k N_{f}, k N_{c}\right), \quad e_{2}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}, \quad(n, m) \mapsto n N_{f}+m N_{c} .
\end{aligned}
$$

(Example Continued)

- Homology groups:

$$
H_{*}\left(\partial X_{7}\right) \cong\left\{\mathbb{Z}, 0, \mathbb{Z} \oplus \mathbb{Z}_{\operatorname{gcd}\left(N_{f}, N_{c}\right)}, 0, \mathbb{Z} \oplus \mathbb{Z}_{\operatorname{gcd}\left(N_{f}, N_{c}\right)}, 0, \mathbb{Z}\right\}
$$

- The short exact sequences

$$
\begin{align*}
& 0 \rightarrow \mathcal{C} \rightarrow Z_{\widetilde{G}} \rightarrow Z_{G} \rightarrow 0 \tag{1}\\
& 0 \rightarrow \mathcal{C}^{\vee} \rightarrow \widetilde{\mathcal{A}}^{\vee} \rightarrow \mathcal{A}^{\vee} \rightarrow 0 \tag{2}
\end{align*}
$$

take the form

$$
\begin{align*}
& 0 \rightarrow \mathbb{Z}_{\operatorname{gcd}\left(N_{f}, N_{c}\right)} \rightarrow \mathbb{Z}_{\operatorname{gcd}\left(N_{f}, N_{c}\right)} \times \mathbb{Z}_{\operatorname{gcd}\left(N_{f}, N_{c}\right)} \rightarrow \mathbb{Z}_{\operatorname{gcd}\left(N_{f}, N_{c}\right)} \rightarrow 0 \tag{3}\\
& 0 \rightarrow \mathbb{Z}_{\operatorname{gcd}\left(N_{f}, N_{c}\right)} \rightarrow \mathbb{Z}_{\operatorname{gcd}\left(N_{f}, N_{c}\right)} \rightarrow 0 \rightarrow 0 \tag{4}
\end{align*}
$$

- Flavor symmetry $G_{F}=\left(S U\left(N_{f}\right) \times S U\left(N_{f}\right)\right) / Z$ with flavor center $\mathbb{Z}_{\operatorname{gcd}\left(N_{f}, N_{c}\right)}$

Compact Models: Singular K3 Surfaces

- Singular elliptic K3 surface $\pi: X \rightarrow \mathbb{P}^{1}$
- Singularities of Kodaira type $\Phi_{i}, \mathfrak{g}_{i}$ at $z_{i} \in \mathbb{P}^{1}$
- Consider patches $B_{i} \subset \mathbb{P}^{1}$ centered on z_{i}
- Define $X^{\text {loc }}=\cup_{i} \pi^{-1}\left(B_{i}\right)$ and $X^{\circ}=X \backslash X^{\text {loc }}$
- Mayer-Vietoris sequence $X=X^{\circ} \cup X^{\text {loc }}$

$$
\partial_{2}: H_{2}(X) \rightarrow H_{1}\left(\partial X^{l o c}\right)
$$

- Relative cycles/Defects of $X^{\text {loc }}$ compactify
- Charge lattice enhances [Guralnik, 2001]
- Supergravity gauge group [Apruzzi, Dierigl, Lin, 2020], [Cvetič, Dierigl, Lin, Zhang, 2021]

$$
G_{\text {sugra }}=\frac{U(1)^{b_{2}(X)} \times G_{\mathrm{sc}}}{\operatorname{Im} \partial_{2}}
$$

Torus Quotients $X=T^{4} / \Gamma$

- Isolated singularities with local neighborhood U_{i} modeled on $\mathbb{C}^{2} / \mathbb{Z}_{n_{i}}$
- Define $X^{\text {loc }}=\bigcup_{i=1}^{N} U_{i}$ and $X^{\circ}=X \backslash X^{\text {loc }}$
- Mayer-Vietoris sequence with respect to the covering $X=X^{\circ} \cup X^{\text {loc }}$

$$
\begin{aligned}
0 & \rightarrow H_{2}\left(X^{\circ}\right) \oplus \bigoplus_{i=1}^{N} H_{2}\left(U_{i}\right) \rightarrow H_{2}(X) \xrightarrow{\partial_{2}} \\
\bigoplus_{i=1}^{N} H_{1}\left(\partial U_{i}\right) & \rightarrow H_{1}\left(X^{\circ}\right) \oplus \bigoplus_{i=1}^{N} H_{1}\left(U_{i}\right) \rightarrow H_{1}(X) \rightarrow 0
\end{aligned}
$$

- Resolved Geometry $\widetilde{X} \rightarrow X$, exceptional curve lattice $L_{E}, \mathrm{~K} 3$ lattice $L_{K 3}$

$$
\begin{aligned}
0 & \rightarrow H_{2}\left(X^{\circ}\right) \oplus L_{\mathrm{E}} \rightarrow L_{\mathrm{K} 3} \xrightarrow{\partial_{2}} \\
\bigoplus_{i=1}^{N} H_{1}\left(\partial U_{i}\right) & \rightarrow H_{1}\left(X^{\circ}\right) \rightarrow H_{1}(X) \rightarrow 0
\end{aligned}
$$

- Image of ∂_{2} partially determined by a lattice embedding problem

Example: Kummer Surface T^{4} / \mathbb{Z}_{2}

- Singular geometry [Spanier, 1956]:

$$
\begin{aligned}
0 & \rightarrow \mathbb{Z}^{6} \rightarrow \mathbb{Z}^{6} \oplus \mathbb{Z}_{2}^{5} \xrightarrow{\partial_{2}} \\
\mathbb{Z}_{2}^{16} & \rightarrow \mathbb{Z}_{2}^{5} \rightarrow 0
\end{aligned}
$$

- Resolved geometry, with the lattice $L_{E} \cong \mathbb{Z}^{16}$ and $L_{K 3} \cong \mathbb{Z}^{22}$

$$
\begin{aligned}
0 & \rightarrow \mathbb{Z}^{6} \oplus L_{E} \rightarrow L_{K 3} \xrightarrow{\partial_{2}} \\
\mathbb{Z}_{2}^{16} & \rightarrow \mathbb{Z}_{2}^{5} \rightarrow 0
\end{aligned}
$$

- $\operatorname{Im}\left(\partial_{2}\right)=\mathbb{Z}_{2}^{6} \oplus \mathbb{Z}_{2}^{5}$, where $\mathbb{Z}_{2}^{5}=L_{\text {Kummer }} / L_{\mathrm{E}}$

(Example Continued)

Local models and affine geometry:

- $\mathbb{Z}_{2}^{16}=\oplus_{i=1}^{16} H_{1}\left(\partial U_{i}\right)=\oplus_{i=1}^{16} H_{1}\left(\mathbb{R} \mathbb{P}^{3}\right) \cong \oplus_{i=1}^{16}\left\langle\mathfrak{T}_{i}\right\rangle$
- Characterize $\mathbb{Z}_{2}^{5} \subset \operatorname{Im} \partial_{2}$ as $\left(n_{I}=0,1\right)$ [Barth, Hulek, Peters, Van de Ven, 2004]

$$
\text { compact 2-cycle } \sum_{I \in \mathbb{Z}_{2}^{4}} n_{l} \mathfrak{T}_{I} \quad \Leftrightarrow \quad f: \mathbb{Z}_{2}^{4} \rightarrow \mathbb{Z}_{2}, I \mapsto n_{I} \text { is affine linear }
$$

- Supergravity gauge group

$$
G_{\text {sugra }}=\left(U(1)^{6} \times \frac{\left(X_{I \in \mathbb{Z}_{2}^{4}} S U(2)_{I}\right)}{\mathbb{Z}_{2}^{5}}\right) / \mathbb{Z}_{2}^{6}
$$

Conclusion and Outlook

- Kodaira thimbles \mathfrak{T} and center divisors for elliptic $C Y$ threefolds X
- Boundary Topology $H_{1}(\partial X), H_{1}\left(\partial X^{\circ}\right), \ldots$
$\leftrightarrow 0$-form, 1-form, 2-group Symmetries
- Cutting and gluing constructions for D6 brane uplifts based on Gysin sequence
- Gluing local models to global models
- Gauged/Broken Higher Symmetries: $T^{4} / \mathbb{Z}_{3}, T^{6} / \mathbb{Z}_{3}, T^{7} / \mathbb{Z}_{2}^{3}, \ldots$
- Gauged/Broken 2-Group Symmetries: $T^{6} / \mathbb{Z}_{4}, T^{6} / \Gamma, \ldots$

