Getting High on Gluing Orbifolds (Part 2)

Max Hübner

2203.10022 with David R. Morrison, Sakura Schäfer-Nameki and Yi-Nan Wang 2203.10102 with Mirjam Cvetič, Jonathan J. Heckman, Ethan Torres

University of Freiburg Geometry, Topology and Singular Special Holonomy Spaces June 8th 2022

Introduction

Overview

Elliptic Calabi-Yau Threefolds D6-brane uplifts Compact Models: Singular K3 Surfaces Conclusion and Outlook

Overview

- 2 Elliptic Calabi-Yau Threefolds
- 3 D6-brane uplifts
- 4 Compact Models: Singular K3 Surfaces
- **5** Conclusion and Outlook

Relative Cycles and Defects Kodaira Thimbles Compact Presentation of Kodaira Thimbles Threefolds

Elliptic Calabi-Yau Threefolds

- Non-compact singular elliptically fibered Calabi-Yau threefolds $\pi : X \to B$ with section $\sigma : B \to X$ and discriminant locus Δ
- 5d SQFT engineered by M-theory on X
- 5d line defects: M2 branes on relative cycles

$$\mathfrak{h}_{(2)} = \operatorname{Tor} rac{H_2(X,\partial X)}{H_2(X)} \cong \operatorname{Tor} H_1(\partial X) \big|_{\operatorname{triv.}}$$

- Step 1: Compute $\mathfrak{h}_{(2)}$, two contributions
 - Cycles of the base B lifted to X via the section σ , $\mathfrak{h}_{(2,B)}$
 - Cycles with one leg in B fibered by vanishing cycle in \mathbb{E} , $\mathfrak{h}_{(2,F)}$
- Latter contain gauge theory data, we therefore focus on h_(2,F)

Kodaira Thimbles

We take a step back an consider local K3s, model for the geometry normal to Δ

• Local K3: $X \to \mathbb{C}$ with singularity of Kodaira type Φ at $z \in \mathbb{C}$

• Boundary $\partial X \to S^1$ with monodromy M_1 , we use

 $0 \rightarrow \operatorname{coker}(M_1-1) \rightarrow H_1(\partial X) \rightarrow \operatorname{ker}(M_0-1) \rightarrow 0$

•
$$\mathfrak{h}_{(2)} = \operatorname{Tor} H_2(X, \partial X) / H_2(X) \cong \operatorname{Tor} \operatorname{Coker}(M_1 - 1) = \langle \mathfrak{T} \rangle$$

Relative Cycles and Defects Kodaira Thimbles Compact Prentation of Kodaira Thimbles Threefolds

Compact Presentation of Kodaira Thimbles

- Resolve Kodaira Singularity $\widetilde{X} \to X$, exceptional curves C_{α_i}
- Dualize to linear forms via intersection pairing

$$\begin{aligned} \alpha &: H_2(\widetilde{X}) \to H_2(\widetilde{X})^* \,, \qquad C_{\alpha_i} \mapsto (C_{\alpha_i}, \,\cdot\,) \,, \\ \beta &: H_2(\widetilde{X}, \partial X) \to H_2(\widetilde{X})^* \,, \qquad \widehat{\mathfrak{T}} \mapsto (\widehat{\mathfrak{T}}, \,\cdot\,) \end{aligned}$$

where $Im(\alpha) \subset Im(\beta)$ over \mathbb{Z} .

 But Im(α) = Im(β) over Q and therefore Kodaira Thimbles admit compact representatives in H₂(X̃, Q/Z)

Relative Cycles and Defects Kodaira Thimbles Compact Presentation of Kodaira Thimbles Threefolds

Example of Kodaira Thimbles

Example of compact representatives for Kodaira Thimbles for singularities of Kodaira type $\Phi = I_n, I_{2n-3}^* (\mathfrak{g} = \mathfrak{su}, \mathfrak{so})$

Threefolds

- Back to: Non-compact elliptic threefold $\pi: X \to B$
- Connected discriminant Δ = ∪_iΔ_i with compact and non-compact components

- Resolution X̃ → X, introduces two types of exceptional curves (in cases considered here)
 - (1) Co-dimension-one: Normal bundle $\mathcal{O}(-2)\oplus \mathcal{O}(0)$
 - (2) Co-dimension-two: Normal bundle $\mathcal{O}(-1)\oplus \mathcal{O}(-1)$

Relative Cycles and Defects Kodaira Thimbles Compact Presentation of Kodaira Thimbles Threefolds

Relative Cycles for Threefolds

• Now compute $\mathfrak{h}_{(2)}$ where

$$\mathfrak{h}_{(2)} = \operatorname{Tor} rac{H_2(X,\partial X)}{H_2(X)}$$

by taking the quotient by all curves in $H_2(X)$ not in in class (2).

• Cycles with one leg in base and fiber are then

 $\{\mathfrak{T}_i | \text{Kodaira Thimble for compact } \Delta_i\}$

• Now quotient by the matter curves (2), this yields identifications among Kodaira Thimbles

 $\mathfrak{h}_{(2),F} = \{\mathfrak{T}_i \mid \text{Kodaira Thimble for compact } \Delta_i\} / \sim_{(2)}$

Center Divisors

- Dual formulation in terms of divisors
- Center divisors D are classes in H₄(X, Q) intersecting all curves integrally and are given by rational linear combinations of Cartan divisors D_{αi}
- Divisors dual to Kodaira thimbles $\mathfrak{T} = q^i C_{\alpha_i}$ are rational combinations of Cartan divisors $\widehat{\mathfrak{T}} = q^i D_{\alpha_i}$ where $q^i \in \mathbb{Q}/\mathbb{Z}$, they admit the pairing

$$\langle \cdot , \cdot \rangle : \quad H_4(X, \mathbb{Q}/\mathbb{Z}) \times H_2(X, \mathbb{Q}/\mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}$$

• Constraint of integral intersection with curves of type (2) gives

$$\widehat{\mathfrak{h}}_{(2,F)} = \left\{ \mathfrak{D}_n = \sum_i n_i \widehat{\mathfrak{T}}_i \, \middle| \begin{array}{c} \mathfrak{D}_n \text{ has integral intersection with} \\ \text{all matter curves (2), } n_i \in \mathbb{Z} \end{array} \right.$$

 $\bullet~$ We have $\widehat{\mathfrak{h}}_{(2,F)}\cong\mathfrak{h}_{(2,F)}$

Relative Cycles and Defects Kodaira Thimbles Compact Presentation of Kodaira Thimbles Threefolds

Example: 5d Spin(10) + 2V

• Geometry:

$$\overset{\mathfrak{so(10)}}{4} - [\mathfrak{sp(2)}]$$

• Resolved geometry, Divisors (Hirzebruch \mathbb{F}), Curves (e, f, h, x_i) :

[H, Morrison, Schäfer-Nameki, Wang, 2022]

Label the compact curves as

$$\begin{split} & C_1 = e|_{D_2} \ , \ C_2 = f|_{\mathfrak{D}_2} \ , \ C_3 = f|_{D_1} \ , \ C_4 = f|_{D_6} \ , \ C_5 = f|_{D_3} \ , \ C_6 = f|_{D_4} \ , \\ & C_7 = x_1|_{D_5} \ C_8 = x_2|_{D_5} \ , \ C_9 = x_3|_{D_5} \ , \ C_{10} = x_4|_{D_5} \ . \end{split}$$

The intersection form $\mathcal{M}_{ij} = D_i \cdot C_j$ is

	C_1	C_2	C ₃	<i>C</i> ₄	C_5	C_6	C7	C ₈	C ₉	C_{10}
D_1	0	1	-2	0	0	0	0	0	0	0
D_2	-2	-2	1	1	1	0	0	0	0	0
D_3	0	1	0	0	-2	1	0	0	0	0
D_4	0	0	0	0	1	-2	1	1	1	1
D_5	0	0	0	0	1	0	-1	-1	-1	-1
D_6	0	1	0	-2	0	0	0	0	0	0

The center divisors for $\mathfrak{h}_2=\mathbb{Z}_2\times\mathbb{Z}_4$ are

$$\mathfrak{D}_{\mathbb{Z}_2} = rac{1}{2}(D_1 + D_6) \;, \; D_{\mathbb{Z}_4} = rac{1}{4}(D_1 + 2D_2 + 2D_3 - D_4 - D_5 + D_6)$$

and here $\mathfrak{h}_{2,F} \cong \mathbb{Z}_2$.

Relative Cycles and Defects Kodaira Thimbles Compact Presentation of Kodaira Thimbles Threefolds

(Example Continued)

We can identify the thimble generating $\mathfrak{h}_{2,F}\cong\mathbb{Z}_2$ directly in the singular geometry. (m=1).

- Elliptic $X_3 \rightarrow B$, $B = \mathcal{O}_{\mathbb{P}^1}(-4)$
- Discriminant Locus

$$\mathbb{P}^1$$
 : $I_m^{*,\mathrm{s}}$
 $F \subset \mathcal{O}_{\mathbb{P}^1}(-4)$: I_{4m}^{ns}

- (n)s = (non)-split
- At Ramification point p one-cycle B collapses
- Tor H₁(∂X) ≅ Z₄ ⊕ Z₂ : Hopf fiber in S₃/Z₄ and B

Relative Cycles and Defects Kodaira Thimbles Compact Presentation of Kodaira Thimbles Threefolds

(Example Continued)

$$\mathbb{E} \,\, \hookrightarrow \,\, \partial X_3 \,\, \to \,\, S^3/\mathbb{Z}_4 = \partial \mathcal{O}_{\mathbb{P}^1}(-4)$$

- Tor $H_1(\partial X) \cong \mathbb{Z}_4 \oplus \mathbb{Z}_2$: Hopf fiber of the base S_3/\mathbb{Z}_4 and B
- Excise singular fibers ∂X_F , implies for base

$${\it S}^1 \ \hookrightarrow \ {\it S}^3/\mathbb{Z}_4 \ \to \ {\it S}^2\setminus\{*\}$$

- Now $S^2 \setminus \{*\}$ deformation retracts to a point
- Base $(S^3/\mathbb{Z}_4)\setminus S^1_H$ deformation retracts to Hopf fiber $(S^1_H)'$
- ∂X_F deformation retracts to three-manifold $\mathbb{E} \hookrightarrow M_3 o (S^1_H)'$

(Example Continued)

• The Hopf circle $(S_H^1)'$ links both S_H^1 and the bulk \mathbb{P}^1 with monodromies

$$M_{l_m^*} = \left(\begin{array}{cc} -1 & -m \\ 0 & -1 \end{array}
ight), \qquad M_{l_{4m}} = \left(\begin{array}{cc} 1 & 4m \\ 0 & 1 \end{array}
ight)$$

• Retraction of ∂X_F to three-manifold $M_3 \to (S^1_H)'$ with monodromy

$$M = \left(\begin{array}{cc} -1 & -5m \\ 0 & -1 \end{array}\right)$$

• We conclude $(\partial X_F \rightarrow \partial X^\circ)$

$$\mathsf{Tor}\, H_1(\partial X^\circ) = \begin{cases} \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_4 \,, & m \in 2\mathbb{Z} \\ \mathbb{Z}_4 \oplus \mathbb{Z}_4 \,, & m \in 2\mathbb{Z} + 1 \end{cases}$$

Relative Cycles and Defects Kodaira Thimbles Compact Presentation of Kodaira Thimbles Threefolds

(Example Continued)

$$egin{array}{rcl} 0 & o & \mathcal{C} & o & Z_{\widetilde{G}_F} & o & Z_{G_F} & o & 0 \ 0 & o & \mathcal{C}^{ee} & o & \widetilde{\mathcal{A}}^{ee} & o & \mathcal{A}^{ee} & o & 0 \end{array}$$

For odd *m* we have:

For even *m* we have:

$$\begin{array}{rcl} 0 \ \rightarrow \ \mathbb{Z}_2 \ \rightarrow \ \mathbb{Z}_2 \ \rightarrow \ 0 \ \rightarrow \ 0 \\ \\ 0 \ \rightarrow \ \mathbb{Z}_2 \ \rightarrow \ \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_4 \ \rightarrow \ \mathbb{Z}_2 \oplus \mathbb{Z}_4 \ \rightarrow \ 0 \end{array}$$

The flavor symmetry is $G = Sp(2m)/\mathbb{Z}_2$ [Apruzzi, Bhardwaj, Oh, Schafer-Nameki, 2021] When *m* odd we have a non-trivial 2-group symmetry.

D6-brane uplifts

IIA Configuration:

- $CY_3 X_6$ with N_i D6 branes wrapped on sLag submanifold M_i
- D6-branes source RR flux $F_2 = dC_1$ counting branes $\int_{S^2} F_2 = n_{D6}$
- Expand F₂ in fluxes through cycles linking D6 loci

M-theory lift [Acharya, Gukov, 2004]:

- Local geometry normal to N_i D6 branes lifts to $\mathbb{C}^2/\mathbb{Z}_{N_i}$
- $X_6^\circ = X_6 \setminus \cup_i M_i$ lifts a circle bundle $X_7^\circ \to X_6^\circ$ with Euler class e = F
- IIA set-up lifts to a circle bundle $X_7 \rightarrow X_6$ with A_{N_i-1} loci

Restrict constructions to the boundary ∂X_7

$$\cdots \to H^{k}(\partial X_{7}^{\circ}) \to H^{k-1}(\partial X_{6}^{\circ}) \xrightarrow{e \wedge} H^{k+1}(\partial X_{6}^{\circ}) \to H^{k+1}(\partial X_{7}^{\circ}) \to \dots$$

Example

- CY₃ [Feng, He, Kennaway, Vafa, 2008], [Del Zotto, Oh, Zhou, 2021] with supersymmetric three-spheres
- Consider local geometry $X_6 = T^*S^3$ of a fixed (color) three-sphere
- Color S^3 intersects flavor S^3 's at points

• Flavor S^3 's decompactify to fiber classes topologically $\mathbb{R}^3 \subset T^*S^3$

• We have $\partial X_6 = S^2 \times S^3$ and $\partial X_6^\circ = S^2 \times (S^3 \setminus \{*_1, *_2\}) \sim S_F^2 \times S_B^2$

(Example Continued)

•
$$\partial X_6^\circ = S^2 \times (S^3 \setminus \{*_1, *_2\}) \sim S_F^2 \times S_B^2$$

• $2 \times N_f$ flavor D6 branes and N_c color D6 branes

•
$$F = N_c \operatorname{PD}[S_f^2] + N_f \operatorname{PD}[S_c^2]$$

• Non-trivial subsequence of the Gysin sequence:

$$\begin{split} 0 &\to H^1(\partial X_7^\circ) \to H^0(S_B^2 \times S_F^2) \xrightarrow{e_0} H^2(S_B^2 \times S_F^2) \to H^2(\partial X_7^\circ) \to 0 \\ 0 &\to H^3(\partial X_7^\circ) \to H^2(S_B^2 \times S_F^2) \xrightarrow{e_2} H^4(S_B^2 \times S_F^2) \to H^4(\partial X_7^\circ) \to 0 \\ e_0 : \mathbb{Z} \to \mathbb{Z}^2, \quad k \mapsto (kN_f, kN_c), \qquad e_2 : \mathbb{Z}^2 \to \mathbb{Z}, \quad (n,m) \mapsto nN_f + mN_c \,. \end{split}$$

(Example Continued)

Homology groups:

$$H_*(\partial X_7) \cong \left\{ \mathbb{Z}, 0, \mathbb{Z} \oplus \mathbb{Z}_{\mathsf{gcd}(N_f, N_c)}, 0, \mathbb{Z} \oplus \mathbb{Z}_{\mathsf{gcd}(N_f, N_c)}, 0, \mathbb{Z} \right\}$$

• The short exact sequences

$$0 \to \mathcal{C} \to Z_{\widetilde{G}} \to Z_G \to 0 \tag{1}$$

$$0 \to \mathcal{C}^{\vee} \to \widetilde{\mathcal{A}}^{\vee} \to \mathcal{A}^{\vee} \to 0, \tag{2}$$

take the form

$$0 \to \mathbb{Z}_{\gcd(N_f,N_c)} \to \mathbb{Z}_{\gcd(N_f,N_c)} \times \mathbb{Z}_{\gcd(N_f,N_c)} \to \mathbb{Z}_{\gcd(N_f,N_c)} \to 0$$
(3)

$$0 \to \mathbb{Z}_{gcd(N_f,N_c)} \to \mathbb{Z}_{gcd(N_f,N_c)} \to 0 \to 0,$$
(4)

• Flavor symmetry $G_F = (SU(N_f) \times SU(N_f))/Z$ with flavor center $\mathbb{Z}_{gcd(N_f,N_c)}$

Elliptic K3 Surfaces Torus Quotients Example: Kummer Surface

Compact Models: Singular K3 Surfaces

- Singular elliptic K3 surface $\pi: X \to \mathbb{P}^1$
- Singularities of Kodaira type Φ_i, \mathfrak{g}_i at $z_i \in \mathbb{P}^1$
- Consider patches $B_i \subset \mathbb{P}^1$ centered on z_i
- Define $X^{\mathsf{loc}} = \cup_i \pi^{-1}(B_i)$ and $X^\circ = X \setminus X^{\mathsf{loc}}$
- Mayer-Vietoris sequence $X = X^{\circ} \cup X^{\mathsf{loc}}$

 $\partial_2 : H_2(X) \rightarrow H_1(\partial X^{\mathsf{loc}})$

- Relative cycles/Defects of X^{loc} compactify
- Charge lattice enhances [Guralnik, 2001]
- Supergravity gauge group [Apruzzi, Dierigl, Lin, 2020], [Cvetič, Dierigl, Lin, Zhang, 2021]

$$\mathcal{G}_{ ext{sugra}} = rac{U(1)^{b_2(X)} imes \mathcal{G}_{ ext{sc}}}{ ext{Im} \, \partial_2}$$

Elliptic K3 Surfaces Torus Quotients Example: Kummer Surface

Torus Quotients $X = T^4/\Gamma$

- Isolated singularities with local neighborhood U_i modeled on $\mathbb{C}^2/\mathbb{Z}_{n_i}$
- Define $X^{\text{loc}} = \bigcup_{i=1}^{N} U_i$ and $X^{\circ} = X \setminus X^{\text{loc}}$
- Mayer-Vietoris sequence with respect to the covering $X = X^{\circ} \cup X^{\mathsf{loc}}$

$$0 \rightarrow H_2(X^{\circ}) \oplus \bigoplus_{i=1}^{N} H_2(U_i) \rightarrow H_2(X) \xrightarrow{\partial_2} \\ \bigoplus_{i=1}^{N} H_1(\partial U_i) \rightarrow H_1(X^{\circ}) \oplus \bigoplus_{i=1}^{N} H_1(U_i) \rightarrow H_1(X) \rightarrow 0$$

• Resolved Geometry $\widetilde{X} \to X$, exceptional curve lattice $L_{
m E}$, K3 lattice $L_{
m K3}$

$$\begin{array}{rcl} 0 & \rightarrow & H_2(X^{\circ}) \oplus L_{\mathrm{E}} & \rightarrow & L_{\mathrm{K3}} & \xrightarrow{\partial_2} \\ & \bigoplus_{i=1}^N H_1(\partial U_i) & \rightarrow & H_1(X^{\circ}) & \rightarrow & H_1(X) & \rightarrow & 0 \end{array}$$

• Image of ∂_2 partially determined by a lattice embedding problem

Elliptic K3 Surfaces Torus Quotients Example: Kummer Surface

Example: Kummer Surface T^4/\mathbb{Z}_2

• Singular geometry [Spanier, 1956]:

$$\begin{array}{cccc} 0 \ \rightarrow \ \mathbb{Z}^6 \ \rightarrow \ \mathbb{Z}^6 \oplus \mathbb{Z}_2^5 \ \xrightarrow{\partial_2} \\ \mathbb{Z}_2^{16} \ \rightarrow \ \mathbb{Z}_2^5 \ \rightarrow \ 0 \end{array}$$

 $\bullet\,$ Resolved geometry, with the lattice $L_{\rm E}\cong \mathbb{Z}^{16}$ and $L_{K3}\cong \mathbb{Z}^{22}$

$$\begin{array}{rcl} 0 & \rightarrow & \mathbb{Z}^6 \oplus \mathcal{L}_{\mathrm{E}} & \rightarrow & \mathcal{L}_{\mathrm{K3}} & \xrightarrow{\partial_2} \\ \mathbb{Z}_2^{16} & \rightarrow & \mathbb{Z}_2^5 & \rightarrow & 0 \end{array}$$

• Im $(\partial_2) = \mathbb{Z}_2^6 \oplus \mathbb{Z}_2^5$, where $\mathbb{Z}_2^5 = L_{\mathsf{Kummer}}/L_{\mathrm{E}}$

Elliptic K3 Surfaces Torus Quotients Example: Kummer Surface

(Example Continued)

Local models and affine geometry:

- $\mathbb{Z}_2^{16} = \bigoplus_{i=1}^{16} H_1(\partial U_i) = \bigoplus_{i=1}^{16} H_1(\mathbb{RP}^3) \cong \bigoplus_{i=1}^{16} \langle \mathfrak{T}_i \rangle$
- Characterize $\mathbb{Z}_2^5 \subset \mathsf{Im}\,\partial_2$ as $(n_I=0,1)$ [Barth, Hulek, Peters, Van de Ven, 2004]

$$\mbox{ compact 2-cycle } \sum_{I \in \mathbb{Z}_2^4} n_I \mathfrak{T}_I \quad \Leftrightarrow \quad f : \mathbb{Z}_2^4 \to \mathbb{Z}_2 \,, \ I \mapsto n_I \ \mbox{ is affine linear }$$

• Supergravity gauge group

$$\mathcal{G}_{ ext{sugra}} = \left(\left. U(1)^6 imes rac{\left(igwedge_{l \in \mathbb{Z}_2^4} \mathcal{S} U(2)_l
ight)}{\mathbb{Z}_2^5}
ight) \Big/ \, \mathbb{Z}_2^6
ight)$$

Conclusion and Outlook

- Kodaira thimbles ${\mathfrak T}$ and center divisors for elliptic CY threefolds X
- Boundary Topology $H_1(\partial X)$, $H_1(\partial X^\circ)$, ...

 \leftrightarrow 0-form, 1-form, 2-group Symmetries

- Cutting and gluing constructions for D6 brane uplifts based on Gysin sequence
- Gluing local models to global models
 - Gauged/Broken Higher Symmetries: $T^4/\mathbb{Z}_3, T^6/\mathbb{Z}_3, T^7/\mathbb{Z}_2^3, \dots$
 - Gauged/Broken 2-Group Symmetries: $T^6/\mathbb{Z}_4, T^6/\Gamma, \dots$